KKU-BiblioMerge: A novel tool for multi-database integration in bibliometric analysis

Autores/as

DOI:

https://doi.org/10.47909/ijsmc.157

Palabras clave:

multi-database integration, bibliometric tool, scientometric analysis, data deduplication, cross-platform analysis, KKU-BiblioMerge

Resumen

Objetivo. Este estudio tuvo como objetivo desarrollar y validar KKU-BiblioMerge V.1.0, una herramienta bibliométrica diseñada para abordar las limitaciones de los datos de una sola fuente en el análisis bibliométrico mediante la integración de datos de múltiples bases de datos, específicamente Scopus y Web of Science (WoS).
Diseño/Metodología/Enfoque. La herramienta se desarrolló utilizando el marco R Shiny e incorpora funciones clave para la deduplicación de datos, el mapeo de campos y las comprobaciones de integridad para garantizar una fusión eficaz de conjuntos de datos. El rendimiento de KKU-BiblioMerge se evaluó probando su capacidad para importar, fusionar y exportar datos bibliométricos, centrándose en la eficiencia y la precisión de la consolidación de registros de Scopus y WoS.
Hallazgos. La aplicación KKU-BiblioMerge procesó e integró eficazmente 686 documentos iniciales, eliminando el 24,49 % de registros duplicados para producir un conjunto de datos final de 518 entradas únicas. La herramienta demostró una sólida consistencia de datos y una alta precisión en el mapeo de campos, ofreciendo una integración multiplataforma confiable de datos bibliométricos en comparación con herramientas como VOSviewer y Biblioshiny.
Originalidad/Valor. KKU-BiblioMerge V.1.0 proporciona una solución robusta y fácil de usar para el análisis bibliométrico de múltiples bases de datos, lo que permite una comprensión más completa e imparcial de los panoramas de investigación. Su capacidad para integrar diversos conjuntos de datos sienta las bases para el avance del software bibliométrico, ampliando el alcance y la precisión de los análisis en todos los dominios científicos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007 DOI: https://doi.org/10.1016/j.joi.2017.08.007

Chansanam, W., & Li, C. (2022). Scientometrics of poverty research for sustainability development: Trend analysis of the 1964–2022 data through Scopus. Sustainability, 14(9), 5339. https://doi.org/10.3390/su14095339 DOI: https://doi.org/10.3390/su14095339

Chansanam, W., & Li, C. (2023). Knowledge structure and trends in poverty research on the Web of Science database: A bibliometric analysis. Journal of Mekong Societies, 19(2), 120–152.

Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359–377. https://doi.org/10.1002/asi.20317 DOI: https://doi.org/10.1002/asi.20317

Chen, C., Ibekwe-SanJuan, F., & Hou, J. (2021). The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. Journal of the American Society for Information Science and Technology, 62(7), 1386–1402. https://doi.org/10.1002/asi.21557 DOI: https://doi.org/10.1002/asi.21309

Chen, C., & Song, M. (2019). Visualizing a field of research: A methodology of systematic scientometric reviews. PLoS One, 14(10), Article e0223994. https://doi.org/10.1371/journal.pone.0223994 DOI: https://doi.org/10.1371/journal.pone.0223994

Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2018). SciMAT: A new science mapping analysis software tool. Journal of the American Society for Information Science and Technology, 62(8), 1609–1630. https://doi.org/10.1002/asi.21525 DOI: https://doi.org/10.1002/asi.22688

Delgado López-Cózar, E., Orduna-Malea, E., Martin-Martin, A., Ayllon, J. M. (2018). Google Scholar: The “big data” bibliographic tool. ArXiv Preprint, arXiv:1806.06351. https://arxiv.org/abs/1806.06351 DOI: https://doi.org/10.1201/9781315155890-4

Fathi, S. J., Habibi, A., & Vakilinezhad, R. (2024). Scientometric literature review and visualization of global research on energy and building. Environment, Development and Sustainability, 1–47. https://doi.org/10.1007/s10668-024-04912-y DOI: https://doi.org/10.1007/s10668-024-04912-y

Garfield, E., Pudovkin, A. I., & Istomin, V. S. (2006). HistCite: A software tool for informetric analysis of citation linkage. Information and Computation, 42(3), 334–339. https://doi.org/10.1016/j.ic.2005.10.011

Ghaleb, H., Alhajlah, H. H., Bin Abdullah, A. A., Kassem, M. A., & Al-Sharafi, M. A. (2022). A scientometric analysis and systematic literature review for construction project complexity. Buildings, 12(4), 482. https://doi.org/10.3390/buildings12040482 DOI: https://doi.org/10.3390/buildings12040482

Guerrero-Bote, V. P., Chinchilla-Rodríguez, Z., Mendoza, A., & de Moya-Anegón, F. (2021). Comparative analysis of the bibliographic data sources Dimensions and Scopus: An approach at the level of universities. Frontiers in Research Metrics and Analytics, 5, Article 593494. https://doi.org/10.3389/frma.2020.593494 DOI: https://doi.org/10.3389/frma.2020.593494

Győrffy, B., Weltz, B., & Szabó, I. (2023). Supporting grant reviewers through the scientometric ranking of applicants. PLoS One, 18(1), Article e0280480. https://doi.org/10.1371/journal.pone.0280480 DOI: https://doi.org/10.1371/journal.pone.0280480

Hou, J., Yang, X., & Chen, C. (2020). Measuring researchers’ potential scholarly impact with structural variations: Four types of researchers in information science (1979–2018). PLoS One, 15(6), Article e0234347. https://doi.org/10.1371/journal.pone.0234347 DOI: https://doi.org/10.1371/journal.pone.0234347

Kastrin, A., & Hristovski, D. (2021). Scientometric analysis and knowledge mapping of literature-based discovery (1986–2020). Scientometrics, 126(2), 1415–1451. https://doi.org/10.1007/s11192-020-03811-z DOI: https://doi.org/10.1007/s11192-020-03811-z

Liu, C., Liu, Z., Zhang, Z., Li, Y., Fang, R., Li, F., & Zhang, J. (2020). A scientometric analysis and visualization of research on Parkinson’s disease associated with pesticide exposure. Frontiers in Public Health, 8, 91. https://doi.org/10.3389/fpubh.2020.00091 DOI: https://doi.org/10.3389/fpubh.2020.00091

Moral-Muñoz, J. A., Herrera-Viedma, E., Santisteban-Espejo, A., & Cobo, M. J. (2020). Software tools for conducting bibliometric analysis in science: An up-to-date review. Science Mapping and Knowledge Discovery Journal. 29(1). https://doi.org/10.3145/epi.2020.ene.03 DOI: https://doi.org/10.3145/epi.2020.ene.03

Munkácsy, G., Herman, P., & Győrffy, B. (2022). Comparison of scientometric achievements at PhD and scientific output ten years later for 4,790 academic researchers. PLoS One, 17(7), Article e0271218. https://doi.org/10.1371/journal.pone.0271218 DOI: https://doi.org/10.1371/journal.pone.0271218

Passas, N. (2024). Bibliometric analysis: The main steps. Research Metrics Journal, 4(2), 65. https://doi.org/10.3390/rmj4020065 DOI: https://doi.org/10.3390/encyclopedia4020065

Pereira, V., Basilio, M. P., Tarjano Santos, C. H. (2023). pyBibX—A Python library for bibliometric and scientometric analysis powered with artificial intelligence tools. ArXiv Preprint, arXiv:2304.14516. https://arxiv.org/abs/2304.14516

Persson, O., Danell, R., & Schneider, J. W. (2009). How to use BibExcel for various types of bibliometric analysis. In Proceedings of the International Society for Scientometrics and Informetrics Conference, Rio de Janeiro, Brazil, 9–13.

Pessin, V. Z., Yamane, L. H., & Siman, R. R. (2022). Smart bibliometrics: An integrated method of science mapping and bibliometric analysis. Scientometrics. https://doi.org/10.1007/s11192-022-04406-6 DOI: https://doi.org/10.1007/s11192-022-04406-6

Romanelli, M., Gonçalves, M. C. P., de Abreu Pestana, L. F., Hitaka Soares, J. A., Boschi, R. S., & Andrade, D. F.. (2021). Four challenges when conducting bibliometric reviews and how to deal with them. Environmental Science and Pollution Research, 28(33), 45692–45706. https://doi.org/10.1007/s11356-021-16420-x DOI: https://doi.org/10.1007/s11356-021-16420-x

Sharma, R., & Das, S. (2023). BiblioMagika: A bibliometric and network analysis tool for early-stage researchers. Journal of Scientometric Research, 12(1), 45–56. https://doi.org/10.5530/jscires.2023.12.7

Sianes, A., Vega-Muñoz, A., Tirado-Valencia, P., & Ariza-Montes, A. (2022). Impact of the sustainable development goals on the academic research agenda. A scientometric analysis. PLoS One, 17(3), Article e0265409. https://doi.org/10.1371/journal.pone.0265409 DOI: https://doi.org/10.1371/journal.pone.0265409

Silva, J., & Ramos, S. (2021). ScientoPy: A python-based tool for the analysis of scientific trends in publications. SoftwareX, 14, Article 100691. https://doi.org/10.1016/j.softx.2021.100691 DOI: https://doi.org/10.1016/j.softx.2021.100691

van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3 DOI: https://doi.org/10.1007/s11192-009-0146-3

van Eck, N. J., & Waltman, L. (2014). CitNetExplorer: A new software tool for analyzing and visualizing citation networks. Journal of Informetrics, 8(4), 802–823. https://doi.org/10.1016/j.joi.2014.07.006 DOI: https://doi.org/10.1016/j.joi.2014.07.006

van Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. ArXiv Preprint, arXiv:1702.03411. https://arxiv.org/abs/1702.03411 DOI: https://doi.org/10.1007/s11192-017-2300-7

Waqas, A., Salminen, J., Jung, S. G., Almerekhi, H., & Jansen, B. J. (2019). Mapping online hate: A scientometric analysis on research trends and hotspots in research on online hate. PLoS One, 14(9), Article e0222194. https://doi.org/10.1371/journal.pone.0222194 DOI: https://doi.org/10.1371/journal.pone.0222194

Descargas

Publicado

2025-02-01

Cómo citar

Chansanam, W., & Li, C. (2025). KKU-BiblioMerge: A novel tool for multi-database integration in bibliometric analysis. Iberoamerican Journal of Science Measurement and Communication, 5(1), 1–16. https://doi.org/10.47909/ijsmc.157