Artificial intelligence and knowledge research networks between Central Asia and the European Union: A bibliometric study using OpenAlex (2000–2025)

Autores

DOI:

https://doi.org/10.47909/ijsmc.277

Palavras-chave:

artificial intelligence, European Union, Central Asia, country collaboration, bibliometric analysis, digital transformation

Resumo

Objective. We examined the development of scientific collaboration in artificial intelligence (AI) between Central Asian countries and the European Union (EU) across three time periods (2000–2009, 2010–2016, and 2017–2024). 

Design/Methodology/Approach. We conducted a bibliometric analysis using OpenAlex as the data source. We developed the search strategy to find scientific works published by authors affiliated with institutions in Central Asia (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan) in the field of AI. 

Results/Discussion. During the first period (2000–2009), the scientific collaboration network in the AI field shows an emerging structure. In the second period (2010–2016), the network experienced a significant expansion in both the number of participants and the density of connections. Scientific collaboration became more organized and widespread, with increased diversity of European countries collaborating with those in Central Asia. During the period 2017–2024, the collaboration network reached an unprecedented level of maturity and diversification. The structure of the network exhibited a substantial rise in the number of links and overall density, along with greater interconnectedness between European and Central Asian countries.

Conclusions. The analysis shows that AI collaboration between the EU and Central Asia has grown from early connections to a broader, more diverse network, with a steady rise in country involvement and relationship density. Kazakhstan remains a key and steady regional bridge to Europe, while Uzbekistan and Tajikistan have experienced consistent growth in their integration.

Downloads

Não há dados estatísticos.

Referências

Bahoo, S., Cucculelli, M., Goga, X., & Mondolo, J. (2024). Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis. SN Business & Economics, 4(2), 23. https://doi.org/10.1007/s43546-023-00618-x DOI: https://doi.org/10.1007/s43546-023-00618-x

Bhagat, P. R., Naz, F., & Magda, R. (2022). Artificial intelligence solutions enabling sustainable agriculture: A bibliometric analysis. PloS one, 17(6), e0268989. https://doi.org/10.1371/journal.pone.0268989 DOI: https://doi.org/10.1371/journal.pone.0268989

Dwivedi, R., & Elluri, L. (2024). Exploring Generative Artificial Intelligence Research: A Bibliometric Analysis Approach. IEEE Access, vol. 12, pp. 119884-119902. DOI: 10.1109/ACCESS.2024.3450629. DOI: https://doi.org/10.1109/ACCESS.2024.3450629

El-Hajj, V. G., Gharios, M., Edström, E., & Elmi-Terander, A. (2023). Artificial intelligence in neurosurgery: a bibliometric analysis. World Neurosurgery, 171, 152-158. https://doi.org/10.1016/j.wneu.2022.12.087 DOI: https://doi.org/10.1016/j.wneu.2022.12.087

Frasca, M., La Torre, D., Pravettoni, G., & Cutica, I. (2024). Explainable and interpretable artificial intelligence in medicine: a systematic bibliometric review. Discover Artificial Intelligence, 4(1), 15. https://doi.org/10.1007/s44163-024-00114-7 DOI: https://doi.org/10.1007/s44163-024-00114-7

Gao, F., Jia, X., Zhao, Z., Chen, C. C., Xu, F., Geng, Z., & Song, X. (2021). Bibliometric analysis on tendency and topics of artificial intelligence over last decade. Microsystem Technologies, 27(4), 1545-1557. https://doi.org/10.1007/s00542-019-04426-y DOI: https://doi.org/10.1007/s00542-019-04426-y

Goodell, J. W., Kumar, S., Lim, W. M., & Pattnaik, D. (2021). Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis. Journal of Behavioral and Experimental Finance, 32, 100577. https://doi.org/10.1016/j.jbef.2021.100577 DOI: https://doi.org/10.1016/j.jbef.2021.100577

Ho, Y. S., & Wang, M. H. (2020). A bibliometric analysis of artificial intelligence publications from 1991 to 2018. COLLNET journal of scientometrics and information management, 14(2), 369-392. https://doi.org/10.1080/09737766.2021.1918032 DOI: https://doi.org/10.1080/09737766.2021.1918032

Hu, H., Wang, D., & Deng, S. (2020). Global Collaboration in Artificial Intelligence: Bibliometrics and Network Analysis from 1985 to 2019. J. Data Inf. Sci., 5(4), 86-115. https://doi.org/10.2478/jdis-2020-0027 DOI: https://doi.org/10.2478/jdis-2020-0027

Jrad, M. (2023). A role of artificial intelligence in the context of economy: Bibliometric analysis and systematic literature review. International Journal of Membrane Science and Technology, 10(3), 1563-1586. DOI: https://doi.org/10.15379/ijmst.v10i3.1756

Kurmangali, M., Yeraliyeva, Y., & Beimisheva, A. (2024). Digitalization and Artificial Intelligence in Central Asia: Governmental Responses and Further Implications. Public Policy and Administration, 23(2), 146-159. DOI: 10.13165/VPA-24-23-2-03. DOI: https://doi.org/10.13165/VPA-24-23-2-03

Lopes, N. M., Aparicio, M., & Neves, F. T. (2025). Challenges and prospects of artificial intelligence in aviation: a bibliometric study. Data Science and Management, 8(2), 207-223. https://doi.org/10.1016/j.dsm.2024.11.001 DOI: https://doi.org/10.1016/j.dsm.2024.11.001

Munim, Z. H., Dushenko, M., Jimenez, V. J., Shakil, M. H., & Imset, M. (2020). Big data and artificial intelligence in the maritime industry: a bibliometric review and future research directions. Maritime Policy & Management, 47(5), 577-597. https://doi.org/10.1080/03088839.2020.1788731 DOI: https://doi.org/10.1080/03088839.2020.1788731

Nalbant, K. G., & Aydin, S. (2025). A bibliometric approach to the evolution of artificial intelligence in digital marketing. International Marketing Review. https://doi.org/10.1108/IMR-04-2024-0132 DOI: https://doi.org/10.1108/IMR-04-2024-0132

Siddiqui, D., Mumtaz, U., & Ahmad, N. (2024). Artificial intelligence in entrepreneurship: A bibliometric analysis of the literature. Journal of Global Entrepreneurship Research, 14(1), 13. https://doi.org/10.1007/s40497-024-00385-5 DOI: https://doi.org/10.1007/s40497-024-00385-5

Singh, A., Kanaujia, A., Singh, V. K., & Vinuesa, R. (2024). Artificial intelligence for Sustainable Development Goals: Bibliometric patterns and concept evolution trajectories. Sustainable Development, 32(1), 724-754. https://doi.org/10.1002/sd.2706 DOI: https://doi.org/10.1002/sd.2706

Xie, B. H., Li, T. T., Ma, F. T., Li, Q. J., Xiao, Q. X., Xiong, L. L., & Liu, F. (2024). Artificial intelligence in anesthesiology: a bibliometric analysis. Perioperative Medicine, 13(1), 121. https://doi.org/10.1186/s13741-024-00480-x DOI: https://doi.org/10.1186/s13741-024-00480-x

Xie, B., Xu, D., Zou, X. Q., Lu, M. J., Peng, X. L., & Wen, X. J. (2024). Artificial intelligence in dentistry: a bibliometric analysis from 2000 to 2023. Journal of Dental Sciences, 19(3), 1722-1733. https://doi.org/10.1016/j.jds.2023.10.025 DOI: https://doi.org/10.1016/j.jds.2023.10.025

Younas, A. (2020). Recent Policies, Regulations and Laws Related to Artificial Intelligence Across the Central Asia (August 1, 2020). Ai Mo Innovation Consultants. Available at https://ssrn.com/abstract=3664983

Downloads

Publicado

2025-08-21

Como Citar

Dmitriyeva, A., Nurbayev, Z., Abdullin, R., Sergazin, Y., & Seilkhan, B. (2025). Artificial intelligence and knowledge research networks between Central Asia and the European Union: A bibliometric study using OpenAlex (2000–2025). Iberoamerican Journal of Science Measurement and Communication, 5(4), 1–10. https://doi.org/10.47909/ijsmc.277

Edição

Secção

Artigo original

Dados de financiamento