A roadmap toward the automatic composition of systematic literature reviews

Autores

DOI:

https://doi.org/10.47909/ijsmc.52

Palavras-chave:

Systematic literature review, Automation, Text mining, Framework, Bibliographic data analysis, Natural language processing

Resumo

Objective.  This paper presents an overview of existing artificial intelligence tools to produce systematic literature reviews. Furthermore, we propose a general framework resulting from combining these techniques to highlight the challenges and possibilities currently existing in this research area.

Design/Methodology/Approach. We undertook a scoping review on the systematic literature review steps to automate them via computational techniques.

Results/Discussion. The process of creating a literature review is both creative and technical. The technical part of this process is liable to automation. Based on the literature, we chose to divide this technical part into four steps: searching, screening, extraction, and synthesis. For each one of these steps, we presented practical artificial intelligence techniques to carry them out. In addition, we presented the obstacles encountered in the application of each technique.

Conclusion. We proposed a framework for automatically creating systematic literature reviews by combining and placing existing techniques in stages where they possess the greatest potential to be useful. Despite still lacking practical assessment in different areas of knowledge, this proposal indicates ways with the potential to reduce the time-consuming and repetitive work embedded in the systematic literature review process.

Originality/Value. The paper presents the current possibilities for automating systematic literature reviews and how they can work together to reduce researchers’ operational workload.

Downloads

Não há dados estatísticos.

Referências

Alguliev, R. M., Aliguliyev, R. M., & Isazade, N. R. (2013). Multiple documents summarization based on evolutionary optimization algorithm. Expert Systems with Applications, 40(5), 1675–1689. https://doi.org/10.1016/j.eswa.2012.09.014 DOI: https://doi.org/10.1016/j.eswa.2012.09.014

Aliyu, M. B., Iqbal, R., & James, A. (2018). The Canonical Model of Structure for Data Extraction in Systematic Reviews of Scientific Research Articles. 2018 Fifth International Conference on Social Networks Analysis, Management and Security (SNAMS), 264–271. https://doi.org/10.1109/SNAMS.2018.8554896 DOI: https://doi.org/10.1109/SNAMS.2018.8554896

Ananiadou, S., Rea, B., Okazaki, N., Procter, R., & Thomas, J. (2009). Supporting Systematic Reviews Using Text Mining. Social Science Computer Review, 27(4), 509–523. https://doi.org/10.1177/0894439309332293 DOI: https://doi.org/10.1177/0894439309332293

Belter, C. W. (2016). Citation analysis as a literature search method for systematic reviews. Journal of the Association for Information Science and Technology, 67(11), 2766–2777. https://doi.org/10.1002/asi.23605 DOI: https://doi.org/10.1002/asi.23605

Bullers, K., Howard, A. M., Hanson, A., Kearns, W. D., Orriola, J. J., Polo, R. L., & Sakmar, K. A. (2018). It takes longer than you think: Librarian time spent on systematic review tasks. Journal of the Medical Library Association, 106(2). https://doi.org/10.5195/JMLA.2018.323 DOI: https://doi.org/10.5195/jmla.2018.323

Carvallo, A., Parra, D., Lobel, H., & Soto, A. (2020). Automatic document screening of medical literature using word and text embeddings in an active learning setting. SCIENTOMETRICS, 125(3), 3047–3084. https://doi.org/10.1007/s11192-020-03648-6 DOI: https://doi.org/10.1007/s11192-020-03648-6

Chali, Y., & Hasan, S. A. (2012). Query-focused multi-document summarization: Automatic data annotations and supervised learning approaches. Natural Language Engineering, 18(1), 109–145. https://doi.org/10.1017/S1351324911000167 DOI: https://doi.org/10.1017/S1351324911000167

Clark, J. (2013). Systematic Reviewing. In S. A. R. Doi & G. M. Williams (Eds.), Methods of Clinical Epidemiology (pp. 187–211). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-37131-8_12 DOI: https://doi.org/10.1007/978-3-642-37131-8_12

Cohen, A. M., Hersh, W. R., Peterson, K., & Yen, P.-Y. (2006). Reducing Workload in Systematic Review Preparation Using Automated Citation Classification. Journal of the American Medical Informatics Association, 13(2), 206–219. https://doi.org/10.1197/jamia.M1929 DOI: https://doi.org/10.1197/jamia.M1929

Das, A., & Verma, R. M. (2020). Can Machines Tell Stories? A Comparative Study of Deep Neural Language Models and Metrics. IEEE Access, 8, 181258–181292. https://doi.org/10.1109/ACCESS.2020.3023421 DOI: https://doi.org/10.1109/ACCESS.2020.3023421

Davis, D. (2016). A practical overview of how to conduct a systematic review. Nursing Standard, 31(12), 60–71. https://doi.org/10.7748/ns.2016.e10316 DOI: https://doi.org/10.7748/ns.2016.e10316

Felizardo, K. R., & Carver, J. C. (2020). Automating Systematic Literature Review. In M. Felderer & G. H. Travassos (Eds.), Contemporary Empirical Methods in Software Engineering (pp. 327–355). Springer International Publishing. https://doi.org/10.1007/978-3-030-32489-6_12 DOI: https://doi.org/10.1007/978-3-030-32489-6_12

Forman, G. (n.d.). An Extensive Empirical Study of Feature Selection Metrics for Text Classification. 17.

Fu, S., Chen, D., He, H., Liu, S., Moon, S., Peterson, K. J., Shen, F., Wang, L., Wang, Y., Wen, A., Zhao, Y., Sohn, S., & Liu, H. (2020). Clinical concept extraction: A methodology review. Journal of Biomedical Informatics, 109. https://doi.org/10.1016/j.jbi.2020.103526 DOI: https://doi.org/10.1016/j.jbi.2020.103526

Gambhir, M., & Gupta, V. (2017). Recent automatic text summarization techniques: A survey. Artificial Intelligence Review, 47(1), 1–66. https://doi.org/10.1007/s10462-016-9475-9 DOI: https://doi.org/10.1007/s10462-016-9475-9

Golder, S., Loke, Y., & McIntosh, H. M. (2008). Poor reporting and inadequate searches were apparent in systematic reviews of adverse effects. Journal of Clinical Epidemiology, 61(5), 440–448. https://doi.org/10.1016/j.jclinepi.2007.06.005 DOI: https://doi.org/10.1016/j.jclinepi.2007.06.005

Gough, D., Thomas, J., & Oliver, S. (2012). Clarifying differences between review designs and methods. Systematic Reviews, 1(1), 28. https://doi.org/10.1186/2046-4053-1-28 DOI: https://doi.org/10.1186/2046-4053-1-28

Grant, M. J., & Booth, A. (2009). A typology of reviews: An analysis of 14 review types and associated methodologies: A typology of reviews, Maria J. Grant & Andrew Booth. Health Information & Libraries Journal, 26(2), 91–108. https://doi.org/10.1111/j.1471-1842.2009.00848.x DOI: https://doi.org/10.1111/j.1471-1842.2009.00848.x

Guyatt, G., Rennie, D., Meade, M., & Cook, D. (Eds.). (2015). Users’ guides to the medical literature. Essentials of evidence-based clinical practice (Third edition). McGraw-Hill Education Medical.

Hausner, E., Waffenschmidt, S., Kaiser, T., & Simon, M. (2012). Routine development of objectively derived search strategies. Systematic Reviews, 1(1), 19. https://doi.org/10.1186/2046-4053-1-19 DOI: https://doi.org/10.1186/2046-4053-1-19

Huang, L., He, Y., Wei, F., & Li, W. (2010). Modeling Document Summarization as Multi-objective Optimization. 2010 Third International Symposium on Intelligent Information Technology and Security Informatics, 382–386. https://doi.org/10.1109/IITSI.2010.80 DOI: https://doi.org/10.1109/IITSI.2010.80

Islam, Md. S., Sharmin Mousumi, S. S., Abujar, S., & Hossain, S. A. (2019). Sequence-to-sequence Bangla Sentence Generation with LSTM Recurrent Neural Networks. Procedia Computer Science, 152, 51–58. https://doi.org/10.1016/j.procs.2019.05.026 DOI: https://doi.org/10.1016/j.procs.2019.05.026

Jonnalagadda, S., & Petitti, D. (2013). A new iterative method to reduce workload in systematic review process. International Journal of Computational Biology and Drug Design, 6(1/2), 5. https://doi.org/10.1504/IJCBDD.2013.052198 DOI: https://doi.org/10.1504/IJCBDD.2013.052198

Jonnalagadda, S. R., Goyal, P., & Huffman, M. D. (2015). Automating data extraction in systematic reviews: A systematic review. Systematic Reviews, 4(1), 78. https://doi.org/10.1186/s13643-015-0066-7 DOI: https://doi.org/10.1186/s13643-015-0066-7

Khabsa, M., Elmagarmid, A., Ilyas, I., Hammady, H., & Ouzzani, M. (2016). Learning to identify relevant studies for systematic reviews using random forest and external information. Machine Learning, 102(3), 465–482. https://doi.org/10.1007/s10994-015-5535-7 DOI: https://doi.org/10.1007/s10994-015-5535-7

Kiritchenko, S., de Bruijn, B., Carini, S., Martin, J., & Sim, I. (2010). ExaCT: Automatic extraction of clinical trial characteristics from journal publications. BMC Medical Informatics and Decision Making, 10(1), 56. https://doi.org/10.1186/1472-6947-10-56 DOI: https://doi.org/10.1186/1472-6947-10-56

Kontonatsios, G., Spencer, S., Matthew, P., & Korkontzelos, I. (2020). Using a neural network-based feature extraction method to facilitate citation screening for systematic reviews. Expert Systems with Applications: X, 6, 100030. https://doi.org/10.1016/j.eswax.2020.100030 DOI: https://doi.org/10.1016/j.eswax.2020.100030

Le, Q., & Mikolov, T. (n.d.). Distributed Representations of Sentences and Documents. 9.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539 DOI: https://doi.org/10.1038/nature14539

Lewis, F. L., & Vrabie, D. (2009). Reinforcement learning and adaptive dynamic programming for feedback control. IEEE Circuits and Systems Magazine, 9(3), 32–50. https://doi.org/10.1109/MCAS.2009.933854 DOI: https://doi.org/10.1109/MCAS.2009.933854

Lopes, A. A., Pinho, R., Paulovich, F. V., & Minghim, R. (2007). Visual text mining using association rules. Computers & Graphics, 31(3), 316–326. https://doi.org/10.1016/j.cag.2007.01.023 DOI: https://doi.org/10.1016/j.cag.2007.01.023

Marcos-Pablos, S., & García-Peñalvo, F. J. (2018). Decision support tools for SLR search string construction. Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality, 660–667. https://doi.org/10.1145/3284179.3284292 DOI: https://doi.org/10.1145/3284179.3284292

Marshall, I. J., & Wallace, B. C. (2019). Toward systematic review automation: A practical guide to using machine learning tools in research synthesis. Systematic Reviews, 8(1), 163, s13643-019-1074–1079. https://doi.org/10.1186/s13643-019-1074-9 DOI: https://doi.org/10.1186/s13643-019-1074-9

Mishra, S. K., Saini, N., Saha, S., & Bhattacharyya, P. (2021). Scientific document summarization in multi-objective clustering framework. Applied Intelligence. https://doi.org/10.1007/s10489-021-02376-5 DOI: https://doi.org/10.1007/s10489-021-02376-5

Munn, Z., Peters, M.D.J., Stern, C. et al. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med Res Methodol 18, 143 (2018). https://doi.org/10.1186/s12874-018-0611-x DOI: https://doi.org/10.1186/s12874-018-0611-x

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097 DOI: https://doi.org/10.1371/journal.pmed.1000097

Neduncheli, R., . R. M., & . E. S. (2012). Text Summarization for Multi Documents Using Genetic Algorithm. International Journal of Soft Computing, 7(1), 20–23. https://doi.org/10.3923/ijscomp.2012.20.23 DOI: https://doi.org/10.3923/ijscomp.2012.20.23

O’Mara-Eves, A., Thomas, J., McNaught, J., Miwa, M., & Ananiadou, S. (2015). Using text mining for study identification in systematic reviews: A systematic review of current approaches. Systematic Reviews, 4(1), 5. https://doi.org/10.1186/2046-4053-4-5 DOI: https://doi.org/10.1186/2046-4053-4-5

Pulsiri, N., & Vatananan-Thesenvitz, R. (2018). Improving Systematic Literature Review with Automation and Bibliometrics. 2018 Portland International Conference on Management of Engineering and Technology (PICMET), 1–8. https://doi.org/10.23919/PICMET.2018.8481746 DOI: https://doi.org/10.23919/PICMET.2018.8481746

Rautray, R., & Balabantaray, R. C. (2017). Bio-inspired approaches for extractive document summarization: A comparative study. Karbala International Journal of Modern Science, 3(3), 119–130. https://doi.org/10.1016/j.kijoms.2017.06.001 DOI: https://doi.org/10.1016/j.kijoms.2017.06.001

Reiter, E., & Dale, R. (1997). Building applied natural language generation systems. Natural Language Engineering, 3(1), 57–87. https://doi.org/10.1017/S1351324997001502 DOI: https://doi.org/10.1017/S1351324997001502

Ros, R., Bjarnason, E., & Runeson, P. (2017). A Machine Learning Approach for Semi-Automated Search and Selection in Literature Studies. Proceedings of the 21st International Conference on Evaluation and Assessment in Software Engineering, 118–127. https://doi.org/10.1145/3084226.3084243 DOI: https://doi.org/10.1145/3084226.3084243

Scells, H., & Zuccon, G. (2018). Generating Better Queries for Systematic Reviews. The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, 475–484. https://doi.org/10.1145/3209978.3210020 DOI: https://doi.org/10.1145/3209978.3210020

Scells, H., Zuccon, G., & Koopman, B. (2021). A comparison of automatic Boolean query formulation for systematic reviews. Information Retrieval Journal, 24(1), 3–28. https://doi.org/10.1007/s10791-020-09381-1 DOI: https://doi.org/10.1007/s10791-020-09381-1

Scells, H., Zuccon, G., Koopman, B., & Clark, J. (2020). Automatic Boolean Query Formulation for Systematic Review Literature Search. Proceedings of The Web Conference 2020, 1071–1081. https://doi.org/10.1145/3366423.3380185 DOI: https://doi.org/10.1145/3366423.3380185

Silva Júnior, E. M. da, & Dutra, M. L. (2021). A Roadmap for Composing Automatic Literature Reviews: A Text Mining Approach. In E. Bisset Álvarez (Ed.), Data and Information in Online Environments (Vol. 378, pp. 229–239). Springer International Publishing. https://doi.org/10.1007/978-3-030-77417-2_17 DOI: https://doi.org/10.1007/978-3-030-77417-2_17

Song, W., Cheon Choi, L., Cheol Park, S., & Feng Ding, X. (2011). Fuzzy evolutionary optimization modeling and its applications to unsupervised categorization and extractive summarization. Expert Systems with Applications, 38(8), 9112–9121. https://doi.org/10.1016/j.eswa.2010.12.102 DOI: https://doi.org/10.1016/j.eswa.2010.12.102

Speckman, R. A., & Friedly, J. L. (2019). Asking Structured, Answerable Clinical Questions Using the Population, Intervention/Comparator, Outcome (PICO) Framework. PM&R, 11(5), 548–553. https://doi.org/10.1002/pmrj.12116 DOI: https://doi.org/10.1002/pmrj.12116

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (Second edition). The MIT Press.

Thomas, J., McNaught, J., & Ananiadou, S. (2011). Applications of text mining within systematic reviews. 14. DOI: https://doi.org/10.1002/jrsm.27

Tsafnat, G., Glasziou, P., Choong, M. K., Dunn, A., Galgani, F., & Coiera, E. (2014). Systematic review automation technologies. Systematic Reviews, 3(1), 74. https://doi.org/10.1186/2046-4053-3-74 DOI: https://doi.org/10.1186/2046-4053-3-74

van Dinter, R., Tekinerdogan, B., & Catal, C. (2021). Automation of systematic literature reviews: A systematic literature review. Information and Software Technology, 136, 106589. https://doi.org/10.1016/j.infsof.2021.106589 DOI: https://doi.org/10.1016/j.infsof.2021.106589

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention Is All You Need. ArXiv:1706.03762 [Cs]. http://arxiv.org/abs/1706.03762

Wallace, B. C., Trikalinos, T. A., Lau, J., Brodley, C., & Schmid, C. H. (2010). Semi-automated screening of biomedical citations for systematic reviews. BMC Bioinformatics, 11(1), 55. https://doi.org/10.1186/1471-2105-11-55 DOI: https://doi.org/10.1186/1471-2105-11-55

Wang, Y., Wang, L., Rastegar-Mojarad, M., Moon, S., Shen, F., Afzal, N., Liu, S., Zeng, Y., Mehrabi, S., Sohn, S., & Liu, H. (2018). Clinical information extraction applications: A literature review. Journal of Biomedical Informatics, 77, 34–49. https://doi.org/10.1016/j.jbi.2017.11.011 DOI: https://doi.org/10.1016/j.jbi.2017.11.011

Downloads

Publicado

2021-07-27

Como Citar

Silva Júnior, E. M. da, & Dutra, M. L. (2021). A roadmap toward the automatic composition of systematic literature reviews. Iberoamerican Journal of Science Measurement and Communication, 1(2), 1–22. https://doi.org/10.47909/ijsmc.52