Brazil Developing Current Research Information Systems (BrCRIS) as data sources for studies of research

Autores/as

DOI:

https://doi.org/10.47909/ijsmc.135

Palabras clave:

Recommender system, Innovation systems, Scientific and technological applications, Open access, BrCris

Resumen

Objective. BrCris/IBICT is presented as a scientific and technological recommender system based on a collaborative information filter, enabling users to receive recommendations fitting their profile. The BrCris/IBICT is inspired by PTCRIS Project and LA Referencia and is designed to store, manage and exchange contextual metadata for research activity financed by Government Agencies. Therefore, it intends to present the BrCris/IBICT, which has as its central objective the construction and monitoring, through the interoperability of Brazilian science and technology data, in a single system, with capillary articles in specificities.

Design/Methodology/Approach. The proposal and data modeling started in 2015 and matured as a handy tool in 2021. With semantic questions asked and all data finally certified, your recommendation systems proved to be an evolutionary process demonstrating the acquired know-how. The current research had an explanatory, descriptive approach for exploring, analyzing, and treating the data obtained in the tool in an explanatory way.

Results/Discussion. As the main results, we can highlight that though the spectrum of recommendations is infinite, BrCris/IBICT presents four models to recommend relevant contents: scientific production, theses and dissertations; patents and innovation; and scientific editors. The future will prove how successful the interactions are, but the certifications will be continuous.

Conclusions. BrCris, even though it is in the conclusion phase, already has an extensive consolidated dataset, representing consistent graphics on the dashboard, which may help the scientific community when it becomes publicly available.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Barcellos, C. D., Musa, D. L., Brandao, A. L., & Warpechowski, M. (2007). Sistema de recomendaçao acadêmico para apoio a aprendizagem. RENOTE, 5(2). https://doi.org/10.22456/1679-1916.14236 DOI: https://doi.org/10.22456/1679-1916.14236

Bevan, S., & Harrington, J. (2011). Managing research publications: lessons learned from the implementation of a Current Research Information System. Serials, 24(1). 26-30. https://doi.org/10.1629/2426 DOI: https://doi.org/10.1629/2426

Börner, K., Conlon, M., Corson-Rikert, J., & Ding, Y. (2012). VIVO: A semantic approach to scholarly networking and discovery. Synthesis lectures on the Semantic Web: theory and technology, 7(1), 1-178. https://doi.org/10.2200/S00428ED1V01Y201207WBE002 DOI: https://doi.org/10.2200/S00428ED1V01Y201207WBE002

Cazella , S. C. (2006). Aplicando a relevância da opinião de usuários em sistema de recomendação para pesquisadores (Tese de Doutorado). Programa de Pós-Graduação em Computação, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2006. Available in: https://lume.ufrgs.br/handle/10183/8424

Cazella, S. C., Reategui, E. B., Machado, M., & Barbosa, J. L. V. (2009, November). Recomendação de objetos de aprendizagem empregando filtragem colaborativa e competências. In Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE) (Vol. 1, No. 1). Available in: http://www.niee.ufrgs.br/eventos/SBIE/2009/conteudo/artigos/completos/61791_1.pdf

Grava, A. P. (2016). Sistema de recomendação de artigos científicos utilizando dados sociais (Dissertação de Mestrado). Programa de Pós-Graduação em Sistemas de Informação, Universidade de São Paulo, São Paulo, 2016. https://doi.org/10.11606/D.100.2016.tde-26072016-160726 DOI: https://doi.org/10.11606/D.100.2016.tde-26072016-160726

Heon, M., Belkouch, R., Dickner, N., & Jerabek, A. (2020). VIVO as a Linked Open Data Enabler for the Université du Québec Network. In 11th International VIVO Conference, 2020, June 16-18. https://doi.org/10.13140/RG.2.2.25018.41924

Jetten, M., Simons, E., & Rijnders, J. (2019). The role of CRIS's in the research life cycle. A case study on implementing a FAIR RDM policy at Radboud University, the Netherlands. Procedia Computer Science, 146, 156-165. https://doi.org/10.1016/j.procs.2019.01.090 DOI: https://doi.org/10.1016/j.procs.2019.01.090

Krebs, L. M., Rocha, R. P. D., & Ribeiro, C. (2017). Quem leu este também leu...: sistema de recomendação na biblioteca universitária. Perspectivas em Ciência da Informação, 22, 151-169. https://doi.org/10.1590/1981-5344/2496 DOI: https://doi.org/10.1590/1981-5344/2496

Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56-58. https://doi.org/10.1145/245108.245121 DOI: https://doi.org/10.1145/245108.245121

Schafer, J. B., Konstan, J. A., & Riedl, J. (2001). E-commerce recommendation applications. Data mining and knowledge discovery, 5(1), 115-153. https://doi.org/10.1023/A:1009804230409 DOI: https://doi.org/10.1023/A:1009804230409

Schafer, J. B., Konstan, J., & Riedl, J. (1999, November). Recommender systems in e-commerce. In Proceedings of the 1st ACM conference on Electronic commerce (pp. 158-166). https://dl.acm.org/doi/pdf/10.1145/336992.337035 DOI: https://doi.org/10.1145/336992.337035

Silva, H. G. A. (2020). Um estudo de caso de aplicação de sistemas de recomendação baseado em filtragem colaborativa na tarefa de designação de profissionais para serviços de TIC Offshore (Dissertação de Mestrado). Universidade Federal Fluminense, Rio das Ostras, 2020. Available in: https://app.uff.br/riuff/handle/1/21694

Descargas

Publicado

2022-06-29

Cómo citar

Luiz Pinto, A., de Carvalho Segundo, W. L. R., Dias, T. M. R., Vivian Santos Silva, Gomes, J. C., & Quoniam, L. (2022). Brazil Developing Current Research Information Systems (BrCRIS) as data sources for studies of research . Iberoamerican Journal of Science Measurement and Communication, 2(1). https://doi.org/10.47909/ijsmc.135

Datos de los fondos