Machine learning models in health prevention and promotion and labor productivity: A co-word analysis

Autores/as

  • Sergio Arturo Dominguez Miranda Universidad Panamericana
  • Roman Rodriguez Aguilar Universidad panamericana

DOI:

https://doi.org/10.47909/ijsmc.85

Palabras clave:

co-word analysis, research trends, bibliometrics, machine learning models, health prevention and promotion, labor productivity

Resumen

La salud es elemento vital para el desarrollo de diversas habilidades y potenciar la economía de los países. El impacto en la productividad por parte de los empleados en las empresas puede tener un beneficio relevante tanto económico como reputacional, sin embargo, la forma de abordaje puede ser complicada si no tenemos herramientas de análisis como los generados a partir de modelos de machine Learning, el propósito de esta investigación es la realización de un análisis bibliográfico respecto a investigaciones enfocadas en productividad de las empresas a partir de los elementos de salud y con análisis de machine Learning utilizando métodos de análisis estadístico, relaciones y análisis histórico con base a la terminología utilizada en palabras clave y los resúmenes de la, se encontraron 87 artículos relevantes desde el 2008 a la fecha con un crecimiento anual promedio de 23.25%, se encontraron los principales algoritmos utilizados de machine Learning, los principales enfoques de investigación derivado del análisis de mapeo temático, los principales autores que han escrito así como referenciados y el uso de componentes principales mostró los principales términos con un 71.92% de variabilidad. Se espera que esta investigación pueda dar norte a futuras investigaciones para enfoque en productividad empresarial y el beneficio para los empleados.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdul Salam, M., Taha, S., & Ramadan, M. (2021). COVID-19 detection using federated machine learning. PLoS One, 16(6), e0252573. https://doi.org/10.1371/journal.pone.0252573 DOI: https://doi.org/10.1371/journal.pone.0252573

Aguilar, C.A. (1999). Promoción de la salud para la prevención de las enfermedades crónico-degenerativas vinculadas con la alimentación y el estilo de vida. Salud Comunitaria y promoción de la salud. ICEPSS Editores.

Amarasingam, N., Salgadoe, A. S. A., Powell, K., Gonzalez, L. F., & Natarajan, S. (2022). A review of UAV platforms, sensors, and applications for monitoring of sugarcane crops. Remote Sensing Applications: Society and Environment, 26. https://doi.org/100712. 10.1016/j.rsase.2022.100712 DOI: https://doi.org/10.1016/j.rsase.2022.100712

Antonovsky, A. (1979). Health, stress, and coping. New perspectives on mental and physical well-being, 12-37.

Arco-Canoles, D., del Carmen, O., Puenayan Portilla, Y. G., & Vaca Morales, L. V. (2019). Modelo de Promoción de la salud en el lugar de trabajo: una propuesta. Avances en Enfermería, 37(2), 227-236. https://doi.org/10.15446/av.enferm.v37n2.73145 DOI: https://doi.org/10.15446/av.enferm.v37n2.73145

Baig, M. M., GholamHosseini, H., Moqeem, A. A., Mirza, F., & Lindén, M. (2017). A systematic review of wearable patient monitoring systems–current challenges and opportunities for clinical adoption. Journal of medical systems, 41(7), 1-9. https://doi.org/10.1007/s10916-017-0760-1 DOI: https://doi.org/10.1007/s10916-017-0760-1

Baji, F., Azadeh, F., Parsaei-Mohammadi, P., & Parmah, S. (2018). Mapping intellectual structure of health literacy area based on co-word analysis in web of science database during the years 1993-2017. Health information management, 15(3), 139-145. https://doi.org/10.22122/him.v15i3.3577

Bello-Chavolla, O. Y., Bahena-López, J. P., Vargas-Vázquez, A., Antonio-Villa, N. E., Márquez-Salinas, A., Fermín-Martínez, C. A., ... & Metabolic Syndrome Study Group. (2020). Clinical characterization of data-driven diabetes subgroups in Mexicans using a reproducible machine learning approach. BMJ Open Diabetes Research and Care, 8(1), e001550. http://dx.doi.org/10.1136/bmjdrc-2020-001550 DOI: https://doi.org/10.1136/bmjdrc-2020-001550

Beswick, D. M., Humphries, S. M., Balkissoon, C. D., Strand, M., Vladar, E. K., Lynch, D. A., & Taylor-Cousar, J. L. (2022). Impact of cystic fibrosis transmembrane conductance regulator therapy on chronic rhinosinusitis and health status: deep learning CT analysis and patient-reported outcomes. Annals of the American Thoracic Society, 19(1), 12-19. https://doi.org/10.1513/AnnalsATS.202101-057OC DOI: https://doi.org/10.1513/AnnalsATS.202101-057OC

Biundo, E., Pease, A., Segers, K., de Groote, M., d’Argent, T., & Schaetzen, E. D. (2020). The socio-economic impact of AI in healthcare. Deloitte & MedTech Europe. https://www.medtecheurope.org/wp-content/uploads/2020/10/mte-ai_impact-in-healthcare_oct2020_report.pdf.

Callon, M., Courtial, J. P., & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry. Scientometrics, 22, 155-205. DOI: https://doi.org/10.1007/BF02019280

Chaker, L., Falla, A., van der Lee, S.J., Muka, T., Imo, D., Jaspers, L., Colpani, V., Mendis, S., Chowdhury, R., Bramer, W. M., Pazoki, R., & Franco, O. H. (2015). The global impact of non-communicable diseases on macro-economic productivity: a systematic review. European Journal of Epidemiology, 30(5), 357-395. https://doi.org/10.1007/s10654-015-0026-5. DOI: https://doi.org/10.1007/s10654-015-0026-5

Chapman, L. S. & Pelletier, K. R. (2004) Population Health Management as a Strategy for Creation of Optimal Healing Environments in Worksite and Corporate Settings. The journal of alternative and complementary medicine. 10(1), 127–140. https://doi.org/10.1089/acm.2004.10.S-127. DOI: https://doi.org/10.1089/1075553042245854

Cheng, B., & Wang, M. (2011). Co-occurrence analysis of domain knowledge in e-learning enabled workforce development. International Journal of Continuing Engineering Education and Life Long Learning, 21(1), 87-102. https://doi.org/10.1504/IJCEELL.2011.039696 DOI: https://doi.org/10.1504/IJCEELL.2011.039696

Córdova-Villalobos, J.A., Barriguete-Meléndez, J.A., Lara-Esqueda, A., Barquera, S., Rosas-Peralta, M., Hernández-Ávila, M., León-May, M.A. & Aguilar-Salinas, C.A. (2008). Las enfermedades crónicas no transmisibles en México: sinopsis epidemiológica y prevención integral. Salud Pública de México, 50 (5): 419-427. Recuperado en 30 de marzo de 2022, de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0036-36342008000500015&lng=es&tlng=es. DOI: https://doi.org/10.1590/S0036-36342008000500015

Currie, G., & Hawk, K. E. (2021, March). Ethical and legal challenges of artificial intelligence in nuclear medicine. In Seminars in Nuclear Medicine (Vol. 51, No. 2, pp. 120-125). WB Saunders. https://doi.org/10.1053/j.semnuclmed.2020.08.001 DOI: https://doi.org/10.1053/j.semnuclmed.2020.08.001

De la Hoz-Correa, A., Muñoz-Leiva, F., & Bakucz, M. (2018). Past themes and future trends in medical tourism research: A co-word analysis. Tourism management, 65, 200-211. https://doi.org/10.1016/j.tourman.2017.10.001 DOI: https://doi.org/10.1016/j.tourman.2017.10.001

Domínguez-Miranda, S. A., & Rodríguez-Aguilar, R. (2022, June). Health 4.0, Prevention, and Health Promotion in Companies: A Systematic Literature Review. In International Conference on Computer Science and Health Engineering (pp. 217-245). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-34750-4_13 DOI: https://doi.org/10.1007/978-3-031-34750-4_13

El Naqa, I., & Murphy, M. J. (2015). What is machine learning?. Machine learning in radiation oncology. 3-11. Springer, Cham. https://doi.org/10.1007/978-3-319-18305-3_1. DOI: https://doi.org/10.1007/978-3-319-18305-3_1

Fatima, M., & Pasha, M. (2017). Survey of machine learning algorithms for disease diagnostic. Journal of Intelligent Learning Systems and Applications, 9(01), 1. https://doi.org/10.4236/jilsa.2017.91001. DOI: https://doi.org/10.4236/jilsa.2017.91001

Finkelstein, E. A., Sahasranaman, A., John, G., Haaland, B. A., Bilger, M., Sloan, R. A.; Khaing, E.E & Evenson, K. R. (2015). Design and baseline characteristics of participants in the Trial of Economic Incentives to Promote PA (TRIPPA): a randomized controlled trial of a six-month pedometer program with financial incentives. Contemporary clinical trials, 41, 238-247. https://doi.org/10.1016/j.cct.2015.01.020. DOI: https://doi.org/10.1016/j.cct.2015.01.020

Golder, S. A., & Macy, M. W. (2011). Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science, 333(6051), 1878-1881. https://doi.org/10.1126/science.1202775 DOI: https://doi.org/10.1126/science.1202775

González-Valiente, C. L., Costas, R., Noyons, E., Steinerová, J., & Šušol, J. (2021). Terminological (di) similarities between information management and knowledge management: a term co-occurrence analysis. Mobile Networks and Applications, 26(1), 336-346. https://link.springer.com/article/10.1007/s11036-020-01643-y DOI: https://doi.org/10.1007/s11036-020-01643-y

Haldar, S.K. & Mallik, G. (2010): Does human capital cause economic growth? A case study of India, International Journal of Economic Sciences and Applied Research. Kavala Institute of Technology, 3(1) 7-25. http://hdl.handle.net/10419/66597.

Irizarry, R. A. (2019). Introduction to data science: Data analysis and prediction algorithms with R. CRC Press. https://doi.org/10.1201/9780429341830 DOI: https://doi.org/10.1201/9780429341830

Jaspers, L., Colpani, V., Chaker, L., van der Lee, S.J., Muka, T., Imo, D., Mendis, S., Chowdhury, R., Bramer, W. M., Falla, A., Pazoki, R., & Franco, O. H. (2015). The global impact of non-communicable diseases on households and impoverishment: a systematic review. European Journal of Epidemiology, 30(3), 163-188. https://doi.org/10.1007/s10654-014-9983-3. DOI: https://doi.org/10.1007/s10654-014-9983-3

Kjell, K., Johnsson, P., & Sikström, S. (2021). Freely generated word responses analyzed with artificial intelligence predict self-reported symptoms of depression, anxiety, and worry. Frontiers in Psychology, 12, 602581. https://doi.org/10.3389/fpsyg.2021.602581 DOI: https://doi.org/10.3389/fpsyg.2021.602581

Koopmanschap, M. A., Rutten, F. F., van Ineveld, B. M., & Van Roijen, L. (1995). The friction cost method for measuring indirect costs of disease. Journal of health economics, 14(2), 171-189. https://doi.org/10.1016/0167-6296(94)00044-5. DOI: https://doi.org/10.1016/0167-6296(94)00044-5

Kumar, Y., & Mahajan, M. (2020). Recent advancement of machine learning and deep learning in the field of healthcare system. Computational intelligence for machine learning and healthcare informatics, 1, 77. https://doi.org/10.1515/9783110648195-005 DOI: https://doi.org/10.1515/9783110648195-005

Lee, J. S., Kang, M. A., & Lee, S. K. (2020). Effects of the e-Motivate4Change program on metabolic syndrome in young adults using health apps and wearable devices: Quasi-experimental study. Journal of medical Internet research, 22(7), e17031. https://doi.org/10.2196/17031. DOI: https://doi.org/10.2196/17031

Leydesdorff, L., & Rafols, I. (2009). A global map of science based on the ISI subject categories. Journal of the American Society for Information Science and Technology, 60(2), 348-362. https://doi.org/10.1002/asi.20967 DOI: https://doi.org/10.1002/asi.20967

Li, Y., Bai, C., & Reddy, C. K. (2016). A distributed ensemble approach for mining healthcare data under privacy constraints. Information sciences, 330, 245-259. https://doi.org/10.1016/j.ins.2015.10.011 DOI: https://doi.org/10.1016/j.ins.2015.10.011

Lis, A. (2018). Keywords co-occurrence analysis of research on sustainable enterprise and sustainable organisation. Journal of Corporate Responsibility and Leadership, 5(2), 47-66. https://doi.org/10.12775/JCRL.2018.011

Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and Research (IJSR).[Internet], 9(1), 381-386. https://doi.org/10.21275/ART20203995

Mansyur, M. (2021). Occupational Health, Productivity and Evidence-Based Workplace Health Intervention. Acta Medica Philippina, 55(6). https://doi.org/10.47895/amp.v55i6.4273. DOI: https://doi.org/10.47895/amp.v55i6.4273

Mayne, T. J., Howard, K., & Brandt-Rauf, P. W. (2004). Measuring and evaluating the effects of disease on workplace productivity. Journal of Occupational and Environmental Medicine, 46(6), S1-S2. https://doi.org/10.1097/01.jom.0000126688.57275.6d DOI: https://doi.org/10.1097/01.jom.0000126688.57275.6d

Mhasawade, V., Zhao, Y., & Chunara, R. (2021). Machine learning and algorithmic fairness in public and population health. Nature Machine Intelligence, 3(8), 659-666. https://doi.org/10.1109/OJEMB.2021.3117872 DOI: https://doi.org/10.1038/s42256-021-00373-4

Nutbeam, D. & Muscat, D. M. (2021). Health promotion glossary 2021. Health Promotion International, 36(6), 1578-1598. https://doi.org/10.1093/heapro/daaa157 DOI: https://doi.org/10.1093/heapro/daaa157

OPS, Organización Panamericana de la Salud. (2022). Curso de vida saludable. Accessed on October 6th, 2023, from: https://www.paho.org/es/temas/curso-vida-saludable

Rangel-Baltazar, E., Cuevas-Nasu, L., Shamah-Levy, T., Rodríguez-Ramírez, S., Méndez-Gómez-Humarán, I., & Rivera, J. A. (2019). Association between high waist-to-height ratio and cardiovascular risk among adults sampled by the 2016 Half-Way National Health and Nutrition Survey in Mexico (ENSANUT MC 2016). Nutrients, 11(6), 1402. https://doi.org/10.3390/nu11061402 DOI: https://doi.org/10.3390/nu11061402

Roberts Jr, J. M. (2000). Correspondence analysis of two-mode network data. Social Networks, 22(1), 65-72. https://doi.org/10.1016/S0378-8733(00)00017-4 DOI: https://doi.org/10.1016/S0378-8733(00)00017-4

Rongen, A., Robroek, S. J., van Lenthe, F. J., & Burdorf, A. (2013). Workplace health promotion: a meta-analysis of effectiveness. American journal of preventive medicine, 44(4), 406-415. https://doi.org/10.1016/j.amepre.2012.12.007 DOI: https://doi.org/10.1016/j.amepre.2012.12.007

Rozjabek, H., Fastenau, J., LaPrade, A., & Sternbach, N. (2020). Adult obesity and health-related quality of life, patient activation, work productivity, and weight loss behaviors in the United States. Diabetes, metabolic syndrome and obesity: targets and therapy, 13, 2049. https://doi.org/10.2147%2FDMSO.S245486 DOI: https://doi.org/10.2147/DMSO.S245486

SAP. (2022). ¿Qué es Machine Learning?. Accessed on October 6th, 2023, from: https://www.sap.com/latinamerica/insights/what-is-machine-learning.html

Schultz, T. P. (1997). Assessing the productive benefits of nutrition and health: An integrated human capital approach. Journal of Econometrics, 77(1), 141-158. https://doi.org/10.1016/S0304-4076(96)01810-6 DOI: https://doi.org/10.1016/S0304-4076(96)01810-6

Shahbaz, M., Ali, S., Guergachi, A., Niazi, A., & Umer, A. (2019, July). Classification of Alzheimer's Disease using Machine Learning Techniques. In Data (pp. 296-303). https://doi.org/10.5220/0007949902960303 DOI: https://doi.org/10.5220/0007949902960303

Silverio, A., Cavallo, P., De Rosa, R., & Galasso, G. (2019). Big health data and cardiovascular diseases: a challenge for research, an opportunity for clinical care. Frontiers in medicine, 6, 36. https://doi.org/10.3389/fmed.2019.00036 DOI: https://doi.org/10.3389/fmed.2019.00036

Tompa, E., Dolinschi, R., & De Oliveira, C. (2006). Practice and potential of economic evaluation of workplace-based interventions for occupational health and safety. Journal of Occupational Rehabilitation, 16(3), 367-392. https://doi.org/10.1007/s10926-006-9035-2 DOI: https://doi.org/10.1007/s10926-006-9035-2

Torii, M., Fan, J. W., Yang, W. L., Lee, T., Wiley, M. T., Zisook, D. S., & Huang, Y. (2015). Risk factor detection for heart disease by applying text analytics in electronic medical records. Journal of biomedical informatics, 58, S164-S170. https://doi.org/10.1016/j.jbi.2015.08.011 DOI: https://doi.org/10.1016/j.jbi.2015.08.011

T-Systems. (2016). Big data y salud: Predicción de enfermedades. Accessed on October 6th, 2023 from: https://www.t-systemsblog.es/big-data-y-salud-prediccion-de-enfermedades/

Wagner, G.R (2014). Can Predictive Analytics Help Reduce Workplace Risk? Accessed on October 6th, 2023 from: https://blogs.cdc.gov/niosh-science-blog/2014/10/02/pa/

WHO, World Health Organization. (2021a). Non Communicable diseases. https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases#:~:text=Cardiovascular%20diseases%20account%20for%20most,of%20all%20premature%20NCD%20deaths.

Yang, Y., & Wu, L. (2021). Machine learning approaches to the unit commitment problem: Current trends, emerging challenges, and new strategies. The Electricity Journal, 34(1), 106889. https://doi.org/10.1016/j.tej.2020.106889 DOI: https://doi.org/10.1016/j.tej.2020.106889

Zhang, H., Jiang, Y., Nguyen, H. D., Poo, D. C. C., & Wang, W. (2017). The effect of a smartphone-based coronary heart disease prevention (SBCHDP) programme on awareness and knowledge of CHD, stress, and cardiac-related lifestyle behaviours among the working population in Singapore: a pilot randomized controlled trial. Health and quality of life outcomes, 15(1), 1-13. https://doi.org/10.1186/s12955-017-0623-y DOI: https://doi.org/10.1186/s12955-017-0623-y

Zhang, W., Bansback, N., & Anis, A. H. (2011). Measuring and valuing productivity loss due to poor health: A critical review. Social science & medicine, 72(2), 185-192. https://doi.org/10.1016/j.socscimed.2010.10.026 DOI: https://doi.org/10.1016/j.socscimed.2010.10.026

Descargas

Publicado

2024-04-07

Cómo citar

Dominguez Miranda, S. A., & Rodriguez Aguilar , R. (2024). Machine learning models in health prevention and promotion and labor productivity: A co-word analysis. Iberoamerican Journal of Science Measurement and Communication, 4(1), 1–16. https://doi.org/10.47909/ijsmc.85