Mapeo temático de la inteligencia artificial en la administración: un enfoque bibliométrico usando análisis de co-palabras (2015–2024)

Autores/as

DOI:

https://doi.org/10.47909/ijsmc.205

Palabras clave:

bibliometría, análisis de co-palabras, inteligencia artificial, ciencias de la administración, negocios, contabilidad

Resumen

Objetivo. El objetivo de este estudio fue, por un lado, mapear las principales temáticas de la literatura sobre inteligencia artificial en administración y, por otro lado, explorar las relaciones entre dichos temas.

Diseño/Metodología/Enfoque. Se realizó un análisis de co-palabras sobre 15 835 artículos indexados en Scopus (2015–2024), empleando como unidad de análisis las palabras clave del autor en el área de administración. La red semántica se construyó con los 50 términos más frecuentes, aplicando normalización por asociación y el algoritmo Walktrap para la detección de clústeres.

Resultados/Discusión. Los resultados revelan que la literatura se organiza en torno a tres grupos temáticos. El primero se centra en interfaces conversacionales, el segundo en transformación digital y el tercero adopta un enfoque computacional. La estructura temática identificada refleja un campo en proceso de consolidación, con predominio de enfoques técnicos y una especialización funcional limitada.

Conclusiones. La investigación actual se centra más en el desarrollo metodológico que en su aplicación estratégica en contextos organizativos específicos. Estos hallazgos ponen de manifiesto la necesidad de enfoques más integrales que articulen tecnología, gestión y gobernanza, así como de una agenda futura centrada en su adopción desde perspectivas sociotécnicas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abulibdeh A., Zaidan E., & Abulibdeh R. (2024). Navigating the confluence of artificial intelligence and education for sustainable development in the era of industry 4.0: Challenges, opportunities, and ethical dimensions. Journal of Cleaner Production, 437, Article 140527. https://doi.org/10.1016/j.jclepro.2023.140527 DOI: https://doi.org/10.1016/j.jclepro.2023.140527

Ala’Raj, M., & Abbod, M. F. (2016). Classifiers consensus system approach for credit scoring. Knowledge-Based Systems, 104, 89–105. https://doi.org/10.1016/j.knosys.2016.04.013 DOI: https://doi.org/10.1016/j.knosys.2016.04.013

Ameen N., Sharma G. D., Tarba S., Rao A., & Chopra R. (2022). Toward advancing theory on creativity in marketing and artificial intelligence. Psychology and Marketing, 39(9), 1802–1825. https://doi.org/10.1002/mar.21699 DOI: https://doi.org/10.1002/mar.21699

Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007 DOI: https://doi.org/10.1016/j.joi.2017.08.007

Bag, S., & Pretorius, J. H. C. (2022). Relationships between industry 4.0, sustainable manufacturing and circular economy: Proposal of a research framework. International Journal of Organizational Analysis, 30(4), 864–898. https://doi.org/10.1108/IJOA-04-2020-2120 DOI: https://doi.org/10.1108/IJOA-04-2020-2120

Berente, N., Gu, B., Recker, J., & Santhanam, R. (2021). Managing AI. MIS Quarterly, 45(3), 1433–1450. https://doi.org/10.25300/MISQ/2021/16274

Brynjolfsson, E., McAfee, A., & Rock, D. (2023, November). How to capitalize on generative AI. Harvard Business Review. https://hbr.org/2023/11/how-to-capitalize-on-generative-ai

Callon, M., Courtial, J.-P., & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemistry. Scientometrics, 22(1), 155–205. https://doi.org/10.1007/BF02019280 DOI: https://doi.org/10.1007/BF02019280

Carvalho, I., & Ivanov, S. (2024). ChatGPT for tourism: Applications, benefits and risks. Tourism Review, 79(2), 290–303. https://doi.org/10.1108/TR-02-2023-0088 DOI: https://doi.org/10.1108/TR-02-2023-0088

Chan, S. W. K., & Chong, M. W. C. (2017). Sentiment analysis in financial texts. Decision Support Systems, 94, 53–64. https://doi.org/10.1016/j.dss.2016.10.006 DOI: https://doi.org/10.1016/j.dss.2016.10.006

Chen, Y., Mislove, A., & Wilson, C. (2016). An empirical analysis of algorithmic pricing on Amazon Marketplace. In Proceedings of the 25th International Conference on World Wide Web (pp. 1339–1349). https://doi.org/10.1145/2872427.2883089 DOI: https://doi.org/10.1145/2872427.2883089

Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402. https://doi.org/10.1002/asi.21525 DOI: https://doi.org/10.1002/asi.21525

Cortés, J. (2019). Innovation in Latin America through the lens of bibliometrics: Crammed and fading away. Scientometrics, 121. https://doi.org/10.1007/s11192-019-03201-0 DOI: https://doi.org/10.1007/s11192-019-03201-0

Di Vaio, A., Palladino, R., Hassan, R., & Escobar, O. (2020). Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review. Journal of Business Research, 121, 283–314. https://doi.org/10.1016/j.jbusres.2020.08.019 DOI: https://doi.org/10.1016/j.jbusres.2020.08.019

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070 DOI: https://doi.org/10.1016/j.jbusres.2021.04.070

Dwivedi, Y. K., Sharma, A., Rana, N. P., Giannakis, M., Goel, P., & Dutot, V. (2023). Evolution of artificial intelligence research in Technological Forecasting and Social Change: Research topics, trends, and future directions. Technological Forecasting and Social Change, 192, Article 122579. https://doi.org/10.1016/j.techfore.2023.122579 DOI: https://doi.org/10.1016/j.techfore.2023.122579

Dwivedi, Y. K., Pandey, N., Currie, W., & Micu, A. (2024). Leveraging ChatGPT and other generative artificial intelligence (AI)-based applications in the hospitality and tourism industry: Practices, challenges and research agenda. International Journal of Contemporary Hospitality Management, 36(1), 1–12. https://doi.org/10.1108/IJCHM-05-2023-0686 DOI: https://doi.org/10.1108/IJCHM-05-2023-0686

Elsevier. (2025). All Science Journal Classifications: ASJC Codes. https://support.qs.com/hc/en-gb/articles/4406036892562-All-Science-Journal-Classifications-ASJC-Codes

Garvey, A. M., Kim, T., & Duhachek, A. (2023). Bad news? Send an AI. Good news? Send a human. Journal of Marketing, 87(1), 10–25. https://doi.org/10.1177/00222429211066972 DOI: https://doi.org/10.1177/00222429211066972

Imran, M., & Almusharraf, N. (2023). Analyzing the role of ChatGPT as a writing assistant at higher education level: A systematic review of the literature. Contemporary Educational Technology, 15(4), Article ep464. https://doi.org/10.30935/cedtech/13605 DOI: https://doi.org/10.30935/cedtech/13605

Ivanov, D. (2024). Digital supply chain management and technology to enhance resilience by building and using end-to-end visibility during the COVID-19 pandemic. IEEE Transactions on Engineering Management, 71, 10485–10495. https://doi.org/10.1109/TEM.2021.3095193 DOI: https://doi.org/10.1109/TEM.2021.3095193

Jakšič, M., & Marinč, M. (2019). Relationship banking and information technology: The role of artificial intelligence and FinTech. Risk Management, 21(1), 1–18. https://doi.org/10.1057/s41283-018-0039-y DOI: https://doi.org/10.1057/s41283-018-0039-y

Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685–695. https://doi.org/10.1007/s12525-021-00475-2 DOI: https://doi.org/10.1007/s12525-021-00475-2

Javaid, M., Haleem, A., Singh, R. P., Khan, S., & Khan, I. H. (2023). Unlocking the opportunities through ChatGPT Tool towards ameliorating the education system. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 3(2), Article 100115. https://doi.org/10.1016/j.tbench.2023.100115 DOI: https://doi.org/10.1016/j.tbench.2023.100115

Kar, A. K., Choudhary, S. K., & Singh, V. K. (2022). How can artificial intelligence impact sustainability: A systematic literature review. Journal of Cleaner Production, 376, Article 134120. https://doi.org/10.1016/j.jclepro.2022.134120 DOI: https://doi.org/10.1016/j.jclepro.2022.134120

Kumar, V., Rajan, B., Gupta, S., & Dalla Pozza, I. (2019). Customer engagement in service. Journal of the Academy of Marketing Science, 47(1), 138–160. https://doi.org/10.1007/s11747-017-0565-2 DOI: https://doi.org/10.1007/s11747-017-0565-2

Kshetri, N., Dwivedi, Y. K., Davenport, T. H., & Panteli, N. (2024). Generative artificial intelligence in marketing: Applications, opportunities, challenges, and research agenda. International Journal of Information Management, 75, Article 102716. https://doi.org/10.1016/j.ijinfomgt.2023.102716 DOI: https://doi.org/10.1016/j.ijinfomgt.2023.102716

Kusiak, A. (2018). Smart manufacturing. International Journal of Production Research, 56(1–2), 508–517. https://doi.org/10.1080/00207543.2017.1351644 DOI: https://doi.org/10.1080/00207543.2017.1351644

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539 DOI: https://doi.org/10.1038/nature14539

Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management, 58(3), Article 103434. https://doi.org/10.1016/j.im.2021.103434 DOI: https://doi.org/10.1016/j.im.2021.103434

Mikalef, P., Pappas, I. O., & Krogstie, J. (2018). Big data analytics capabilities: A systematic literature review and research agenda. Inf Syst E-Bus Manage, 16, 547–578. https://doi.org/10.1007/s10257-017-0362-y DOI: https://doi.org/10.1007/s10257-017-0362-y

Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2), 1–21. https://doi.org/10.1177/2053951716679679 DOI: https://doi.org/10.1177/2053951716679679

Mogaji, E., & Nguyen, N. P. (2022). Managers’ understanding of artificial intelligence in relation to marketing financial services: Insights from a cross-country study. International Journal of Bank Marketing, 40(6), 1272–1298. https://doi.org/10.1108/IJBM-09-2021-0440 DOI: https://doi.org/10.1108/IJBM-09-2021-0440

Moreira, S., & Dallavalle, S. (2024). Unraveling the trends in business process management: A comprehensive bibliometric analysis of management and business literature. Business Process Management Journal. Advance online publication. https://doi.org/10.1108/BPMJ-10-2023-0771 DOI: https://doi.org/10.1108/BPMJ-10-2023-0771

OpenAI. (2015). About OpenAI. https://openai.com/about

Paul, J., Ueno, A., & Dennis, C. (2023). ChatGPT and consumers: Benefits, pitfalls and future research agenda. International Journal of Consumer Studies, 47(4), 1213–1225. https://doi.org/10.1111/ijcs.12928 DOI: https://doi.org/10.1111/ijcs.12928

Pons, P., & Latapy, M. (2005). Computing communities in large networks using random walks. Lecture Notes in Computer Science, 3733, 284–293. https://doi.org/10.1007/11569596_31 DOI: https://doi.org/10.1007/11569596_31

Prather, J., Denny, P., Leinonen, J., Becker, B. A., Albluwi, I., Craig, M., Keuning, H., Kiesler, N., Kohn, T., Luxton-Reilly, A., MacNeil, S., Petersen, A., Pettit, R., Reeves, B. N., & Savelka, J. (2023). The robots are here: Navigating the generative AI revolution in computing education. In ITiCSE-WGR 2023 – Proceedings of the 2023 Working Group Reports on Innovation and Technology in Computer Science Education (pp. 108–159). https://doi.org/10.1145/3623762.3633499 DOI: https://doi.org/10.1145/3623762.3633499

Quach, S., Thaichon, P., Martin, K. D., Weaven, S., & Palmatier, R. W. (2022). Digital technologies: Tensions in privacy and data. Journal of the Academy of Marketing Science, 50(6), 1299–1323. https://doi.org/10.1007/s11747-022-00845-y DOI: https://doi.org/10.1007/s11747-022-00845-y

Rai, A., Constantinides, P., & Sarker, S. (2019). Next-generation digital platforms: Toward human–AI hybrids. MIS Quarterly, 43(1), iii–ix. https://doi.org/10.25300/MISQ/2019/13794

Raj, M. A., Mishra, A., & Forest, G. A. (2024). Predictive analytics for employee attrition: Leveraging machine learning for strategic human resources management. AVE Trends in Intelligent Technoprise Letters.

Rolf, B., Jackson, I., Müller, M., Lang, S., Reggelin, T., & Ivanov, D. (2023). A review on reinforcement learning algorithms and applications in supply chain management. International Journal of Production Research, 61(20), 7151–7179. https://doi.org/10.1080/00207543.2022.2140221 DOI: https://doi.org/10.1080/00207543.2022.2140221

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206–215. https://doi.org/10.1038/s42256-019-0048-x DOI: https://doi.org/10.1038/s42256-019-0048-x

Rusch, M., Schöggl, J.-P., & Baumgartner, R. J. (2023). Application of digital technologies for sustainable product management in a circular economy: A review. Business Strategy and the Environment, 32(3), 1159–1174. https://doi.org/10.1002/bse.3099 DOI: https://doi.org/10.1002/bse.3099

Russell, S., & Norvig, P. (2021). Artificial intelligence: A modern approach (4th ed.). Pearson.

Salgado-García, J. A., Terán-Bustamante, A., & González-Zelaya, V. (2024). Digital transformation in management and accounting sciences: Research trends in Scopus. Iberoamerican Journal of Science Measurement and Communication, 4(1), 1–10. https://doi.org/10.47909/ijsmc.884 DOI: https://doi.org/10.47909/ijsmc.884

Trivedi, J. (2019). Examining the customer experience of using banking chatbots and its impact on brand love: The moderating role of perceived risk. Journal of Internet Commerce, 18(1), 91–111. https://doi.org/10.1080/15332861.2019.1567188 DOI: https://doi.org/10.1080/15332861.2019.1567188

Turcato, C. R. P., Pedroso, B., Arnold, M., & Picinin, C. T. (2024). Adapting to Industry 4.0 in France: Essential competencies for a future-ready workforce. Administrative Sciences, 14(12), 322. https://doi.org/10.3390/admsci14120322 DOI: https://doi.org/10.3390/admsci14120322

Uskoković, V., Maričić, M., Dacić-Pilčević, A., & Jeremić, V. (2024). Navigating the landscape: Unveiling the reflection of AI in the sharing economy through bibliometric-based approach. Zbornik radova Ekonomskog fakulteta u Rijeci, 42(2), 479–507. https://doi.org/10.18045/zbefri.2024.2.5 DOI: https://doi.org/10.18045/zbefri.2024.2.5

Valaskova, K., & Nagy, M. (2024). The role of Industry 4.0 in the context of economic performance of enterprises: A literature review. Economics and Culture, 21(2), 123–137. https://doi.org/10.2478/jec-2024-0023 DOI: https://doi.org/10.2478/jec-2024-0023

Verma, S., Sharma, R., Deb, S., & Maitra, D. (2021). Artificial intelligence in marketing: Systematic review and future research direction. International Journal of Information Management Data Insights, 1(1), Article 100002. https://doi.org/10.1016/j.jjimei.2020.100002 DOI: https://doi.org/10.1016/j.jjimei.2020.100002

Zhang, Y., & Ling, C. (2018). A strategy to apply machine learning to small datasets in materials science. npj Computational Materials, 4(1). https://doi.org/10.1038/s41524-018-0081-z DOI: https://doi.org/10.1038/s41524-018-0081-z

Zupic, I., & Čater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods, 18(3), 429–472. https://doi.org/10.1177/1094428114562629 DOI: https://doi.org/10.1177/1094428114562629

Publicado

2025-07-10

Cómo citar

Salgado-García, J. A., Terán-Bustamante, A., & Velázquez-Salazar, M. (2025). Mapeo temático de la inteligencia artificial en la administración: un enfoque bibliométrico usando análisis de co-palabras (2015–2024). Iberoamerican Journal of Science Measurement and Communication, 5(3), 1–11. https://doi.org/10.47909/ijsmc.205