Leveraging latent persistency in the United States patent and trademark applications to gain insight into the evolution of an innovation-driven economy

Autores/as

DOI:

https://doi.org/10.47909/ijsmc.32

Palabras clave:

Innovation, Hurst, Trademarks, Patents, Persistency

Resumen

Objective: An understanding of when one or more external factors may influence the evolution of innovation tracking indices (such as US patent and trademark applications (PTA)) is an important aspect of examining economic progress/regress. Using exploratory statistics, the analysis uses a novel tool to leverage the long-range dependency (LRD) intrinsic to PTA to resolve when such factor(s) may have caused significant disruptions in the evolution of the indices, and thus give insight into substantive economic growth dynamics.

Approach: This paper explores the use of the Chronological Hurst Exponent (CHE) to explore the LRD using overlapping time windows to quantify long-memory dynamics in the monthly PTA time-series spanning 1977 to 2016.

Results/Discussion: The CHE is found to increase in a clear S-curve pattern, achieving persistence (H~1) from non-persistence (H~0.5). For patents, the inflection occurred over a span of 10 years (1980-1990), while it was much sharper (3 years) for trademarks (1977-1980).

Conclusions/Originality/Value: This analysis suggests (in part) that the rapid augmentation in R&D expenditure and the introduction of the various patent directed policy acts (e.g., Bayh-Dole, Stevenson-Wydler) are the key impetuses behind persistency, latent in PTA. The post-1990’s  exogenic factors seem to be simply maintaining the high degree and consistency of the persistency metric. These findings suggest investigators should consider latent persistency when using these data and the CHE may be an important tool to investigate the impact of substantive exogenous variables on growth dynamics.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alvarez-Ramirez, J.; Rodriguez, E.; Ibarra-Valdez, C. (2020) Medium-term cycles in the dynamics of the Dow Jones Index for the period 1985–2019. Physica A: Statistical Mechanics and its Applications. 546: 124017 https://doi.org/10.1016/j.physa.2019.124017 DOI: https://doi.org/10.1016/j.physa.2019.124017

Anderson, B. (1999) The hunt for S-shaped growth paths in technological innovation: a patent study. J Evol Econ (1999) 9: 487-526 https://doi.org/10.1007/s001910050093 DOI: https://doi.org/10.1007/s001910050093

Carbone, A.; Castelli, G.; Stanley, H.E. (2004) Time-dependent Hurst exponent in financial time series. Physica A: Statistical Mechanics and its Applications. 344(1-2): 267-271 https://doi.org/10.1016/j.physa.2004.06.130 DOI: https://doi.org/10.1016/j.physa.2004.06.130

Cheng, C., Sa-Ngasoongsong, A., Beyca, O., Le, T., Yang, H., Kong, Z., & Bukkapatnam, S. T. (2015). Time series forecasting for nonlinear and non-stationary processes: A review and comparative study. Iie Transactions, 47(10), 1053-1071. https://doi.org/10.1080/0740817X.2014.999180 DOI: https://doi.org/10.1080/0740817X.2014.999180

Coriat, B.; Orsi, F. (2002) Establishing a new intellectual property rights regime in the United States: Origins, content and problems. Research Policy 31:1491-1507. https://doi.org/10.1016/S0048-7333(02)00078-1 DOI: https://doi.org/10.1016/S0048-7333(02)00078-1

Daizadeh, I. (2007) Issued US patents, patent-related global academic and media publications, and the US market indices are inter-correlated, with varying growth patterns. Scientometrics 73(1): 29-36. https://doi.org/10.1007/s11192-007-1749-1 DOI: https://doi.org/10.1007/s11192-007-1749-1

Daizadeh, I. (2009). An intellectual property-based corporate strategy: An R&D spend, patent, trademark, media communication, and market price innovation agenda. Scientometrics 80(3): 731-746. https://doi.org/10.1007/s11192-008-2105-9 DOI: https://doi.org/10.1007/s11192-008-2105-9

Daizadeh, I. (2021). Trademark and patent applications are structurally near-identical and cointegrated: Implications for studies in innovation. Iberoamerican Journal of Science Measurement and Communication, 1(2). https://doi.org/10.47909/ijsmc.33 DOI: https://doi.org/10.47909/ijsmc.33

Daizadeh, I. (2021a). US FDA Drug Approvals are Persistent and Polycyclic: Insights into Economic Cycles, Innovation Dynamics, and National Policy. Therapeutic Innovation and Regulatory Science. https://doi.org/10.1007/s43441-021-00279-8 DOI: https://doi.org/10.1007/s43441-021-00279-8

Daizadeh, I. (2021b). Chronological Hurst exponent elucidates latent persistency within patents and trademarks applications reflecting strength of innovation initiatives between 1977 and 2016. arXiv preprint arXiv:2101.02588.

Dziallas, M.; Blind, K. (2019). Innovation indicators throughout the innovation process: An extensive literature analysis. Technovation 80-81: 3-29. https://doi.org/10.1016/j.technovation.2018.05.005 DOI: https://doi.org/10.1016/j.technovation.2018.05.005

Epicoco, M. (2020). Technological Revolutions and Economic Development: Endogenous and Exogenous Fluctuations. J. Knowl. Econ. https://doi.org/10.1007/s13132-020-00671-z DOI: https://doi.org/10.1007/s13132-020-00671-z

Garcia, C.A. (2020) nonlinearTseries: Nonlinear Time Series Analysis. R package version 0.2.10. https://CRAN.R-project.org/package=nonlinearTseries

Grimaldi, M.; Cricelli, L. (2020). Indexes of patent value: a systematic literature review and classification, Knowledge Management Research & Practice, 18:2, 214-233, https://doi.org/10.1080/14778238.2019.1638737 DOI: https://doi.org/10.1080/14778238.2019.1638737

Haustein H.D.; Neuwirth E. (1982) Long waves in world industrial production, energy consumption, innovations, inventions, and patents and their identification by spectral analysis. Technol. Forecast. Soc. Change, 22:53-89 https://doi.org/10.1016/0040-1625(82)90028-2 DOI: https://doi.org/10.1016/0040-1625(82)90028-2

Hunt, R.M. (1999) Patent reform: a mixed blessing for the US economy. Business Review. Federal Bank of Philadelphia, November-December. Accessed via https://www.philadelphiafed.org/-/media/research-and-data/publications/business-review/1999/november-december/brnd99rh.pdf

Hyndman, R.; Kang, Y.; Montero-Manso, P.; Talagala, T.; Wang, E.; Yang, Y.; O'Hara-Wild, M. (2020) tsfeatures: Time Series Feature Extraction. R package version 1.0.2. https://CRAN.R-project.org/package=tsfeatures

Komsta, L.; Novomestky, F. (2015). moments: Moments, cumulants, skewness, kurtosis and related tests. R package version 0.14. https://CRAN.R-project.org/package=moments

Gross, J.; Ligges, U. (2015). nortest: Tests for Normality. R package version 1.0-4. https://CRAN.R-project.org/package=nortest

Hyndman, R.; Athanasopoulos, G.; Bergmeir, C.; Caceres, G.; Chhay, L.; O'Hara-Wild, M.; Petropoulos, F.; Razbash, S.; Wang, E.; Yasmeen, F. (2020). forecast: Forecasting functions for time series and linear models. R package version 8.12, http://pkg.robjhyndman.com/forecast

Hyndman, R.J.; Khandakar, Y. (2008). “Automatic time series forecasting: the forecast package for R.” Journal of Statistical Software, *26*(3), 1-22. http://www.jstatsoft.org/article/view/v027i03 DOI: https://doi.org/10.18637/jss.v027.i03

Korotayev, A.; Zinkina, J.; Bogevolnov, J.; (2011) Kondratieff waves in global invention activity (1900–2008). Technol. Forecast. Soc. Change, 78:1280-1284 https://doi.org/10.1016/j.techfore.2011.02.011 DOI: https://doi.org/10.1016/j.techfore.2011.02.011

López-de-Lacalle, J. (2019). tsoutliers: Detection of Outliers in Time Series. R package version 0.6-8. https://CRAN.R-project.org/package=tsoutliers

Mandelbrot, B.B.; Wallis, J.R. (1969) Noah, Joseph, and Operational Hydrology. Water Resources Research 4(5) https://doi.org/10.1029/WR004i005p00909 DOI: https://doi.org/10.1029/WR005i004p00917

Mandelbrot, B.B.; Wallis, J.R. (1969) Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence. Water Resources Research 5(5) https://doi.org/10.1029/WR005i005p00967 DOI: https://doi.org/10.1029/WR005i005p00967

Ollech, D. (2019). seastests: Seasonality Tests. R package version 0.14.2. https://CRAN.R-project.org/package=seastests

Qiu, D. (2015). aTSA: Alternative Time Series Analysis. R package version 3.1.2. https://CRAN.R-project.org/package=aTSA

R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ Version 3.6.1 (2019-07-05)

Saha, K.; Madhavan, V.; Chandrashekhar, G.R. (2020) Pitfalls in long memory research. Cogent Economics and Finance 8: 1733280 https://doi.org/10.1080/23322039.2020.1733280 DOI: https://doi.org/10.1080/23322039.2020.1733280

Shang, H. (2020). A Comparison of Hurst Exponent Estimators in Long-range Dependent Curve Time Series. Journal of Time Series Econometrics, 12(1). https://doi.org/10.1515/jtse-2019-0009 DOI: https://doi.org/10.1515/jtse-2019-0009

Slino, M.; Scudero, S.; D’Alessandro, A. (2020). Stochastic models for radon daily time series: seasonality, stationarity, and long-range memory detection. Frontiers in Earth Sciences. https://doi.org/10.3389/feart.2020.575001 DOI: https://doi.org/10.3389/feart.2020.575001

Trapletti, A.; Hornik, K. (2019). tseries: Time Series Analysis and Computational Finance. R package version 0.10-47.

Wu, K.; Chen, S.(2020) Long memory and efficiency of Bitcoin under heavy tails, Applied Economics, 52:48, 5298-5309. https://doi.org/10.1080/00036846.2020.1761942 DOI: https://doi.org/10.1080/00036846.2020.1761942

Descargas

Publicado

2021-08-06

Cómo citar

Daizadeh, I. (2021). Leveraging latent persistency in the United States patent and trademark applications to gain insight into the evolution of an innovation-driven economy. Iberoamerican Journal of Science Measurement and Communication, 1(3), 1–23. https://doi.org/10.47909/ijsmc.32