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ABSTRACT 
Objective. This article aims to carry out a co-word study on the application of machine learning models 
in health prevention and promotion and its effect on labor productivity.
Design/Methodology/Approach. The analysis of the relevant literature on the proposed topic, iden-
tified in the last 15 years in Scopus, is considered. Articles, books, book chapters, editorials, conference 
papers, and reviews of refereed publications were considered. A thematic mapping analysis was per-
formed using factor analysis and strategy diagrams to derive primary research approaches and identify 
frequent themes and thematic evolution.
Results/Discussion. The results of this study show the selection of 87 relevant publications with an 
average annual growth rate of 23.25% in related production. The main machine learning algorithms 
used, the main research approaches, and key authors derived from the analysis of thematic maps were 
identified.
Conclusions. This study emphasizes the importance of using co-word analysis to understand trends in 
research on the impact of health prevention and promotion on labor productivity. The potential benefits 
of using machine learning models to address this issue are highlighted and anticipated to guide future 
research on improving labor productivity through prevention and health promotion.
Originality/Value..Identifying the relationship between work productivity and health prevention and 
promotion through machine learning models is relevant, but little has been analyzed in recent literature. 
The analysis of co-words allows us to establish the reference point of the state of the art in this regard 
and future trends.
Keywords: co-word analysis; research trends; bibliometrics; machine learning models; health prevention 
and promotion; labor productivity.
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INTRODUCTION

N on-communicable diseases (NCDs) stand 
as the leading causes of death and a major 

public health concern globally (Córdova-Vil-
lalobos et al., 2008). The rise in NCDs is closely 
associated with an acute presentation of dys-
lipidemia, constituting one of the primary risk 
factors along with smoking, sedentary activ-
ities, improper nutrition, and genetic factors 
that contribute to the potentiation of diseases 
such as metabolic syndrome (diabetes, hyper-
tension, and obesity), oncological, cardiologi-
cal, and neurological conditions. Improving so-
cial conditions and the adoption of prevention 
and health promotion strategies such as diet 
quality, body weight, smoking cessation, and 
increasing physical activity can significantly al-
leviate the disease burden of these conditions. 
The evolution of technology and its implemen-
tation has revolutionized our perception of the 
world, positively impacting the health sector 
through a range of possible applications with a 
strong emphasis on remote prevention and di-
agnosis, aiming to reduce inequities in access 
to healthcare and the prevalence of non-com-
municable diseases (NCDs) (Dominguez-Mi-
randa & Rodriguez-Aguilar, 2022).

Considering these elements, emphasis has 
been placed on labor productivity, various 
sectors have proposed strategies focused on 
maintaining the well-being of human resourc-
es and avoiding negative impacts on corporate 
objectives, seeking to implement preventive 
and health promotion processes. Haldar and 
Mallik (2010) state that better health improves 
workforce productivity by reducing disability, 
frailty, and the number of days lost due to sick 
leave. Furthermore, it contributes to shaping 
production with any combination of skills, 
physical capital, and technological knowledge 
(Schultz, 1997).

However, analyzing the feasibility and effi-
ciency of NCD prevention initiatives is challeng-
ing because the various strategies implemented 
globally require substantial investments and 
implementation time can be prolonged, making 
it difficult to deduce their impact on labor pro-
ductivity. An increasingly common alternative 
involves the use of technological resources fo-
cused on discovering patterns in data through 
machine learning, which has revolutionized 

analysis, modeling, and decision-making. 
However, the landscape of machine learning 
models is diverse. Therefore, the objective of 
this article is to carry out a co-word study on 
the application of machine learning models in 
health prevention and promotion, and its effect 
on labor productivity. The structure of the work 
is as follows. The first section describes the 
conceptual framework for NCDs, prevention, 
and promotion of health, and labor productivi-
ty. As well as the application of machine learn-
ing models in the analysis of these concepts. 
The second section addresses the design of the 
analysis. Subsequently, the analysis of results 
and conclusions is presented.

THEORETICAL FRAMEWORK

Non-communicable diseases, 
health prevention and promotion, 
and labor productivity

Non-communicable diseases (NCDs) account 
for approximately 70% of all deaths worldwide 
and are defined as chronic diseases, including 
heart diseases, strokes, cancer, chronic respi-
ratory diseases, and diabetes (WHO, 2021). 
NCDs refer to a group of diseases not primarily 
caused by acute infection, resulting in health 
consequences that often necessitate long-term 
treatment and care. It is crucial to note that 
most of these diseases arise from the inter-
action of genetic and environmental factors. 
Predisposition to NCDs becomes evident when 
individuals are exposed to an unfavorable life-
style, characterized by increased calorie con-
sumption, simple sugars, fats, and reduced 
physical activity (Aguilar, 1999).

As the global population ages and the pace 
of life and work accelerates, the incidence of 
chronic diseases increases year by year, accom-
panied by a rise in chronic disease expendi-
tures (Baig et al., 2017). Dietary habits leading 
to high triglyceride levels and abdominal obe-
sity are key risk factors that escalate the risk 
of metabolic syndrome, significantly increas-
ing the likelihood of severe heart diseases and 
strokes and diminishing the quality of life (Fin-
kelstein et al., 2015; Lee et al., 2020).

Pan American Health Organization (OPS, 
2022) estimates a projected expenditure of 
$47 trillion USD from 2010 to 2030 on NCD 
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treatment. This equates to a 48% loss of the 
annual global GDP, impacting 4% of the annual 
GDP in medium to low-income countries. Stud-
ies reveal that out-of-pocket expenses repre-
sent 20% to 30% of income for approximately 
60% of cases reviewed (Jaspers et al., 2015). 
In the United States, cardiovascular diseas-
es result in a productivity loss ranging from 
$8,539 to $10,175 USD per person per year, 
while diabetes mellitus incurs an annual cost 
of $1,962,314 USD with a 49% premature mor-
tality rate. South Korea also faces productivity 
losses ranging from $171,157 to $537,745 USD 
per person per year due to strokes. This evi-
dence underscores the need for a health system 
that monitors individuals with chronic diseas-
es, emphasizing a proactive approach through 
continuous remote health monitoring for em-
ployees (Chaker et al., 2015).

Governments and organizations seek inno-
vative methods for early patient care, acknowl-
edging that late-stage care incurs significantly 
higher costs. Currently, only regular medical 
institutions can provide systematic health 
tests for chronic diseases. However, due to the 
large population base, existing medical re-
sources fall short of meeting people’s medical 
health needs, prompting researchers and or-
ganizations to explore new intervention routes 
(Zhang et al., 2017).

The effect of a working-age population with 
poor health results in absenteeism, presentee-
ism, poor job performance, and decreased pro-
ductivity of workers. Research on the impact of 
health promotion and prevention in the work-
ing-age population indicates that employees 
with low levels of physical activity and seden-
tary behavior are less productive, exhibit great-
er presenteeism, have reduced work capacity, 
and are more prone to getting sick (Rongen et 
al., 2013). Therefore, the need to delve deeper 
into the advantages of health promotion and 
prevention and its effect on work productivity 
is evident. Although sufficient evidence was 
not found on the effects of preventive health 
schemes on work productivity, it can be in-
ferred that the impact may be positive.

At a global level, a concept of great relevance 
has been defined for understanding and ap-
plying different health models. This concept 
is known as health promotion/prevention. 
Both prevention and health promotion involve 

elements to prevent or delay health problems 
and reduce the burden of disease. Activity and 
interest in the fields of workplace health pro-
motion and prevention, awareness of health-
care costs and presenteeism, as well as an ag-
ing population are contributing to increased 
demand for health promotion/prevention, par-
ticularly for working populations (Chapman, 
2005). However, doubts about the economic 
performance associated with these efforts are 
a constant reality. Nutbeam and Muscat (2021) 
argue that the concept of health promotion in-
volves the process that allows individuals to in-
crease control over their health and improve it. 
It covers all political and social strategies aimed 
at modifying and improving health conditions, 
not only for individuals but also for communi-
ties, generating a positive impact on public and 
personal health (Arco-Canoles, 2019). Thus, 
health promotion in the work environment rep-
resents a vital comprehensive social and polit-
ical process, understood as policies and activ-
ities developed to help workers and employers 
improve and control their health, promoting 
the productivity and competitiveness of orga-
nizations (Sánchez et al., 2018, Suárez et al., 
2023, Cano et al., 2023).

As part of the elements of productivity 
within the health of the working-age popula-
tion, two important concepts must be clari-
fied: absenteeism and presenteeism. Absen-
teeism refers to time lost from work due to 
changes in work status, such as a reduction in 
routine working hours, temporary cessation 
of work, job loss, or early retirement (Zhang 
et al., 2011). Presenteeism, on the other hand, 
refers to reduced productivity at work due to 
health problems (Mayne et al., 2004). Health 
risks associated with absenteeism and presen-
teeism include lack of physical activity, poor 
nutrition, high body mass index, high stress, 
and diabetes (Mansyur, 2021). Tompa et al., 
(2006) conducted a literature review on eco-
nomic evaluations of workplace interventions 
for occupational health and safety, providing 
examples of published studies that credit all 
productivity increases to the interventions 
performed. Koopmanschap et al., (1995) cal-
culated the value of lost production, consid-
ering unemployment and the possibility of 
someone replacing a sick employee. Rozjabek 
et al., (2020) carried out an empirical study 
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that evaluates the relationship between phys-
ical components, activation, vitality, and gen-
eral health with absenteeism, presenteeism, 
activity performance behavior, and loss of 
productivity. Showing that the body mass in-
dex had a negative effect on commitment to 
the company and on activity issues.

Machine learning and health issues

Machine learning is an application of artifi-
cial intelligence that allows a system to learn 
from a data-centric environment, seeking to 
learn through explicit programming (El Naqa 
& Murphy, 2015). It can turn a sample of data 
into a computer program capable of drawing 
inferences from new data sets for which it has 
not been previously trained. This construct is 
part of level two of artificial intelligence, as 
shown in Figure 1. In machine learning, algo-
rithms are trained to find patterns and correla-
tions in large data sets and to make the best de-
cisions and predictions with a primary focus. 
in predictive analysis. According to Mahesh 
(2020), Machine Learning can be understood 
as a set of algorithms that continuously learn, 
its function being to extract, process, group, 
and predict.

Figure 1. Levels of Artificial Intelligence. 
Source: SAP (2022).

There are several ways to categorize differ-
ent algorithms. Yang and Wu (2021) classified 
them into three basic categories: supervised 
learning, unsupervised learning, and rein-
forcement learning. Fatima and Pasha (2017) 
presented six methods for diagnostic tasks 
using ML: supervised learning, unsupervised 
learning, semi-supervised learning, reinforce-
ment learning, evolutionary learning, and deep 
learning (Fig. 2).

Figure 2. Machine learning algorithms. Source: Mahesh, 2020.

In the healthcare sector, the use of machine 
learning algorithms to discover patterns and 
achieve early diagnoses has recently gained a 
lot of attention. Healthcare, with the explora-
tion and adoption of personalized medicine, 

is using predictive analytics to tailor health 
screenings and modify treatments for those 
most likely to be successful in a specific indi-
vidual. Some health insurers are also using this 
type of analysis to identify potential high-need/
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high-use beneficiaries to provide more inten-
sive services from anywhere (Wagner, 2014). 
Through large-scale data analysis from various 
sources, such as genetics and laboratory data, 
researchers can extract statistical data with 
the probabilities of developing certain diseas-
es and allow the development of more effective 
strategies for the treatment of diseases (T-sys-
tems, 2016).

Tools that can accelerate people’s discoveries 
about diseases, especially non-communicable 
ones, increasingly focus on things called ar-
tificial intelligence. In recent years, the speed 
of innovation in predictive health applications 
has reached an all-time peak thanks to the 
development of new ecosystems. Major med-
ical technology players and high-tech com-
panies are beginning to implement solutions 
that enable accelerated diagnosis (Biundo et 
al., 2020). Some authors have carried out ana-
lyzes on health indicators derived from various 
databases. Rangel-Baltazat et al., (2019) used 
the 2016 National Health Survey database to 
find correlations between height-weight ratio 
and cardiovascular problems. Mora Brito and 
Herrera (2023) used the INEGI database in 
Mexico, using Random Forest models to un-
derstand the construct of obesity in Mexico. 
Bello-Chavolla et al., used Neural Networks to 
characterize diabetes in Mexico. On the other 
hand, Mhasawade and Chunara (2021) devel-
oped a machine learning-based model to un-
derstand the general risks that may exist in the 
United States workforce. There is a pressing 

need to understand health indicators to trans-
form them into information. Given the com-
plexity and difficulty of grouping such complex 
data, machine learning models can be very use-
ful for characterizing information. However, 
there is little literature focused on the working 
population.

There is a growing interest in modeling and 
health based on automatic learning, but the 
relationship between the prevention and pro-
motion of health and labor productivity has not 
been analyzed exhaustively. Because bibliomet-
ric study allows for establishing the state of the 
art, the trends in research, as well as the key 
concepts addressed, will allow for establishing 
a frame of reference for future studies.

ANALYSIS DESIGN

The Scopus database was used as the infor-
mation source from 2008 - 2023, where the 
necessary references for the research were ob-
tained. There were considered articles, books, 
book chapters, editorials, conference papers, 
and reviews refereed publications as part of the 
research, and during the analysis of the results, 
by filtering the information, a total of 87 docu-
ments were obtained. Subsequently, the data-
base obtained was downloaded to carry out a 
bibliometric study with the use of the R appli-
cation and the Bibliometrix library. Additional 
filtering was also carried out, seeking to com-
bine terms into one, derived from their results, 
as observed in Table 1.

 
Table 1. Consolidation of terms.

As the next step, a co-word analysis was de-
veloped, also known as co-occurrence analysis 
or co-word mapping, which is a quantitative 
method used in bibliometrics to explore rela-
tionships between concepts or terms within 

documents. This approach involves identifying 
frequently co-occurring terms and mapping 
their relationships to uncover underlying 
themes or patterns (Callon et al., 1991). Us-
ing co-word analysis, it can be examined the 
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thematic landscape of machine learning mod-
els in health prevention and promotion and al-
lows the uncovering of the most prominent and 
interconnected concepts within the literature, 

providing valuable insights into the underlying 
structure and trends within the field. Mapping 
words is useful in co-word analysis as it’s re-
flected in Table 2.

Technique Description What researchers can obtain?

Co-occurrence Matrix
Creates a matrix indicating the number of 
times two terms co-occur within a specified 
context.

A quantitative representation of the relation-
ships between terms, forming the basis for 
further analysis.

Factor Analysis
Identifies underlying factors or dimensions 
that explain the patterns of word co-occur-
rence, reducing the dimensionality of the 
data.

Insights into latent themes or concepts within 
the dataset, aiding in thematic identification 
and interpretation.

Cluster Analysis
Groups terms into clusters based on simi-
larities in co-occurrence patterns, revealing 
thematic clusters within the data.

Identification of thematic clusters or groups 
of related terms, facilitating the understand-
ing of thematic structures.

Strategic Diagrams
Provides visual representations of word 
relationships, such as MDS plots or cluster 
dendrograms.

Visual insights into the structure of the co-
word network, aiding in the interpretation 
and communication of findings.

Network Analysis
Analyzes the structure of the co-word net-
work, including centrality measures, commu-
nity detection, and network visualization.

Insights into the organization and connec-
tivity of terms within the co-word network, 
highlighting important nodes and subnet-
works.

Term Mapping
Maps terms onto a conceptual space, often 
using semantic analysis techniques, to 
visualize relationships or similarities between 
terms.

Insights into the conceptual relationships 
between terms, facilitating the identification 
of clusters or thematic areas within the data.

Word Cloud
Visualizes the frequency of terms in the cor-
pus by displaying them in varying font sizes, 
with more frequent terms appearing larger.

A visual representation of the most promi-
nent terms in the corpus, providing an intui-
tive overview of the main topics or themes.

Table 2. Techniques used in co-word analysis. Data compiled 
from Leydesdorff & Rafols (2009), Golder & Macy (2011), and Roberts Jr (2000).

Many researchers have engaged in co-word 
analysis to identify relevant research fields 
across diverse areas of inquiry. Some applica-
tions of this type of study in the business field 
have shown their usefulness in visualization, 
topic detection, information intersection, and 
knowledge management (Gonzalez-Valiente et 
al., 2021, González-Valiente, 2023), identify-
ing leading thematic areas within the research 
field related to a sustainable organization (LIS, 
2018), or for determining the core concepts in 
the domain of e-learning enabled workforce 
development (Cheng & Wang, 2011). In the 
health sector has been used for understand-
ing the thematic evolution of medical tourism 
(De la Hoz-Correa et al., 2018), examining the 
intellectual structure of health literacy area- 
(Baji et al., 2018), drug abuse (Varmazyar et 
al., 2023), or examining to what extent dif-
ferent co-word methods capture items relat-
ed to the primary and secondary symptoms 

associated with major depressive disorder 
(Kjell et al., 2021). 

In this research, it was considered the us-
age of 3 main elements in the co-word analy-
sis. Term mapping for visually representing the 
relationships between health prevention and 
promotion and how is connected to produc-
tivity using machine learning models. A word 
cloud was used for a graphical representation of 
the main terms along the 87 articles where the 
size of each word corresponds to its frequency 
within the dataset. Finally, factorial analysis 
was used to uncover underlying relationships 
between the relevant terms selected. The indi-
cators of machine learning, health, and work 
productivity were studied according to Figure 
3. The objective is to carry out a co-word study 
on the application of machine learning models 
in health prevention and promotion, and its ef-
fect on labor productivity using the 3 technics 
selected.
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Figure 3. Terminology and analysis selected.

RESULTS

It is observed that since 2008, there is informa-
tion related to the terms used; from there, the 
growth of scientific production has had an aver-
age annual increase of 23.25%. Figure 4 shows 

the variety of terms used where we combine 
the main terms used in the 87 articles found. 
This mosaic of words aids in understanding the 
various dimensions of the approach to scientific 
production found.

Figure 4. Word cloud.

In more depth, we see the trend of the rel-
evant topics in Figure 5, where it is observed 
that the focus on health is a first, although 
other terms have been of relevance in the re-
search, this is in accordance with the largest 

number of terms found within the summa-
ries of the documents generated. The num-
ber of times the terms appear in the 87 se-
lected articles can be seen in better detail in 
Table 3.
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Figure 5. Trend topics.

Topic Frequency
Healthcare 338
Algorithm 312

Machine-learning 218
Big-data 170

Productivity 87
Disease 82

Prediction 40

Table 3. Frequency of trend topics.

On the other hand, according to Figure 6, 
Machine Learning is the primary focus of the 
87 identified documents. It is evident that the 
emphasis has primarily been on health and dis-
ease-related topics. Additionally, the produc-
tion has aimed to differentiate analyses by gen-
der. Furthermore, Deep Learning stands out as 
the most referenced algorithm in the selected 
scientific production.

Figure 6. Most relevant words.

The way in which the themes around the 
use of machine learning have evolved in var-
ious aspects is observed as a great derivation 
in the use of algorithms to understand various 

behaviors. This is seen in Figure 7, where the 
use of these algorithms has increased its pro-
duction. on health and disease issues, as well as 
the focus on loss of productivity.
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Figure 7. Thematic evolution.

In the analysis of relationships, two ap-
proaches were pursued. The first involved uti-
lizing all relevant words from both keywords 
and the titles and abstracts of the documents, 
as depicted in Figure 8. As an initial observa-
tion derived from this analysis, it is evident that 
the primary relationship lies precisely in the 
use of Machine Learning. Examining the clus-
tering of sectors reveals primarily three levels 

of association: one focused on productivity, an-
other on artificial intelligence algorithms, and 
a third on diseases. The utilization of cohort 
analysis in adults using artificial intelligence 
in productivity emerges as a significant finding 
among the addressed topics. On the other hand, 
the application of learning systems in diseases 
is another prominent theme highlighted in the 
conducted mapping.

Figure 8. Global mapping of terms related to the scientific production 
of machine learning usage in health and productivity.

In a subsequent analysis, as depicted in Fig-
ure 9, a more in-depth exploration of the top-
ics considered for the analysis of the selected 
terminology is presented. Concerning diseases, 
the focus has been on cardiovascular diseases, 
COVID, and mental health issues. The predom-
inant theme in these articles has been the uti-
lization of predictive elements. The use of big 

data derived from population statistics and the 
Internet of Things has been the primary data 
source for the literature analysis. On the other 
hand, algorithms such as random forest, de-
cision trees, adaptive boosting, Bayesian the-
orems, KNN, and neural networks, including 
convolutional ones, are the preferred choices in 
the analyzed documents.
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Figure 9. Mapping of keywords related to the scientific production 
of machine learning usage in health and productivity.

Ultimately, as part of the analysis construc-
tion, upon examining the factor analysis, it is 
observed that the two main dimensions ac-
cumulate 71.92% of the variability according 
to Figure 10. Natural groupings are apparent, 
such as in the upper-right quadrant, where 
models like decision trees, adaptive boosting, 
and data mining have primarily been em-
ployed in health indicators for prediction. In 
the upper-left quadrant, algorithms like natu-
ral language processing and random forest are 

noticeable in electronic health records. In the 
lower-left quadrant, it is observed that support 
vector machines have been used for adult pa-
tients in clinical studies. On the other hand, the 
use of deep learning has been focused on ele-
ments that enhance quality of life, such as dis-
eases like COVID in the lower-right quadrant. 
Lastly, the lower-right quadrant shows that 
some articles demonstrate the use of KNN for 
the classification of indicators, considering the 
selected terms.

Figure 10. Factor analysis.

The thematic mapping is observed in Figure 
11. The relevant topics that have gained promi-
nence include the study of social media, mental 
health, and health policies. The articles have been 

driven by artificial intelligence, the use of spe-
cialized algorithms in electronic health records, 
and productivity topics that show relevance for 
basic but also trending analysis engines. 
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Figure 11. Thematic map.

Finally, the topics observed to be of less use, 
either due to their emergent nature or a decline 
in their utilization, include diagnostic imaging 
and COVID-related themes.

DISCUSSIONS AND CONCLUSIONS

There has been a significant increase in sci-
entific production related to the selected 
terms, with an average annual growth rate of 
23.25%. The analysis reveals a predominant 
focus on health-related topics, particularly 
in utilizing machine learning and deep learn-
ing algorithms. In addition, concerning the 
impact analyses on productivity, despite no-
table growth and considerable research rele-
vance, it has not yet manifested a significant 
impact. The identified studies predominantly 
focus on addressing specific indicators within 
companies, particularly specific health indica-
tors, with a pronounced emphasis on mental 
health. There exists a gap in the comprehen-
sive treatment of non-communicable diseases 
as a preventive and health promotion model, 
aiming to minimize the impact on labor pro-
ductivity.

On the other hand, machine learning emerg-
es as the primary focus of the identified doc-
uments, with a significant emphasis on health 
and disease-related issues. The relationship 
analysis highlights three primary associations: 
productivity, artificial intelligence algorithms, 
and diseases. Notable themes include the appli-
cation of learning systems in diseases, partic-
ularly cardiovascular diseases, COVID-19, and 
mental health issues, utilizing predictive ele-
ments and big data sources. Additionally, the 
utilization of cohort analysis and factor anal-
ysis reveals distinct patterns in algorithm se-
lection for various health indicators and patient 
groups. Prominent topics driving scientific pro-
duction include the study of social media, men-
tal health, and health policies, driven by arti-
ficial intelligence and specialized algorithms. 
However, certain topics, such as diagnostic im-
aging and COVID-related themes, show either 
emergent nature or declining utilization.

The preferred algorithms in the observed 
documents include random forest, decision 
trees, adaptive boosting, Bayesian theorems, 
KNN, and neural networks, emphasizing 
their relevance in health-related analyses, 
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nevertheless, deep learning stands out as the 
most referenced algorithm, indicating a trend 
toward employing advanced techniques in un-
derstanding various behaviors and addressing 
health challenges. Through Machine Learning 
models, intriguing solutions to the problems 
outlined by several researchers can be found, 
offering suitable resolution models. Further 
research is imperative to enhance productiv-
ity indicators, and health models could play a 
crucial role in improving these metrics within 
companies.

The study carried out demonstrates a sub-
stantial increase in scientific production since 
2008, particularly in health-related areas and 
Machine Learning. There’s a trend towards 
using algorithms to understand behaviors, es-
pecially in health and productivity contexts, 
and Deep Learning is the most prominent al-
gorithm, but also, other algorithms like ran-
dom forest and neural networks are preferred. 
Cohort analysis and disease-focused learning 
systems are significant themes as well. Predic-
tive elements and big data are extensively used 
in disease research. Factor analysis reveals 
groupings based on algorithm types and appli-
cations.

This research underscores the importance of 
employing co-word analysis to grasp the nexus 
between health and productivity in companies. 
It sheds light on the potential advantages of in-
tegrating machine learning models and serves 
as a compass for future studies to bolster labor 
productivity and foster employee well-being. 
Moreover, the analysis highlights a remarkable 
expansion and diversification in scientific out-
put within health-related domains, propelled 
by strides in machine learning and deep learn-
ing algorithms. The dedicated attention given 
to predictive analytics, leveraging big data, and 
thoughtfully selecting algorithms indicates a 
joint effort to address urgent health challeng-
es and improve healthcare delivery and deci-
sion-making processes. These findings antic-
ipate guiding future investigations focused on 
enhancing labor productivity and benefiting 
employees.
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