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ABSTRACT 
Objective. This study investigated the relation between the degree sequences of trees and the ma-
jorization order.
Design/Methodology/Approach. The majorization technique was employed in accordance with the 
tenets of Muirhead’s theorem.
Results. In this study, we proved a theorem that provides a necessary and sufficient condition for degree 
sequences of trees to be comparable in the majorization order.
Research Limitations. Our research was focused on the study of trees rather than general networks. 
Furthermore, our investigation was primarily theoretical in nature.
Practical Implications. Given the pervasiveness of trees in the field of information science, our theoret-
ical study made a significant contribution to the advancement of knowledge regarding trees as a crucial 
data structure.
Originality/Value. This study represented a rare instance of a text that combines two distinct but re-
lated areas of study: the Lorenz curves and majorization on the one hand and the degree sequences of 
networks on the other.
Keywords: networks; trees; data structures; majorization; Lorenz curves; degree sequences.
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1. INTRODUCTION

I n this introduction, we recall the fundamen-
tal concepts that will be discussed in greater 

detail in the subsequent sections of this article. 
These notions and their associated notation are 
well-established in the fields of network and 
graph theory (see, e.g., Knuth, 1973; Wasser-
man & Faust, 1994) or are taken from previous 
articles (Egghe, 2024). Let G = (V,E) be an un-
directed network, where V = (vk )k=1,…,N denotes 

the set of nodes or vertices, and E denotes the 
set of links or edges. We assume that #V = N > 1. 
A path of length n is a sequence of vertices (v₀, 
…, vk, vk+1, …, vn) such that {v0, …, vn−1} and 
{v1, …, vn} are sets (being sets each consist of 
different elements), and for k = 0, …, n − 1, vk is 
adjacent to vk+1. A cycle is a path for which the 
starting point v0 coincides with the endpoint 
vn. A graph is connected if there exists (at least 
one) path between any two vertices. If #V = N, 
then the degree of node i  (i = 1, …, N; i.e., the 
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number of edges connected to node i) is denot-
ed as δi. In this article, we always assume that 
G is connected; hence, all degrees are strictly 
larger than zero. As there is no natural order 
among the nodes in a network, we assume that 
these values are ranked in decreasing order.

1.1. Notation

The sequence of degrees of the nodes in a net-
work G with N nodes is denoted as

ΔG = (δ1 (G), δ2 (G),…,δN (G)),	 (1)

We will informally refer to such a sequence 
as a delta sequence, consisting of delta values. 
Indices in the delta notation refer to a rank. 
Clearly,  δi = 2(#E), a notion which is known 
as the total degree of the network. It is easy to 
see that 2(N – 1) ≤  δi ≤ N(N – 1). The low-
er bound is obtained, for example, for a tree 
(hence also for a chain) consisting of N nodes, 
while the upper bound is obtained for a com-
plete graph where each node is connected to all 
other nodes. Before moving on to examples and 
theories, we recall the following definitions.

1.2. Definition: Trees and branches

A free or unrooted tree is a connected graph 
with no cycles. Equivalently, it is a connected 
graph such that removing any edge makes it 
disconnected. Another equivalent definition 
states that if v and v′ are different vertices, 
then there exists exactly one path from v to v′ 
(Knuth, 1973). Often, there is one designated 
node, called “the root.” In that case, one says 
that the tree is rooted.

If m is any node in T (but not a terminal 
node, i.e., a node with degree one), then a 
branch rooted at m consists of one link at m, 
and all nodes and links connected to m in T via 
that link. This is illustrated in Figure 1.

As emphasized by Knuth (1973, p. 305), 
trees are the most important nonlinear data 
structures. 

1.3. Definition: Isomorphic graphs

Two graphs G and G′ are isomorphic if there ex-
ists a bijection f between the vertices of G and G′ 
such that there is an edge between vertices u and 

v in G if and only if there is an edge between the 
vertices f(u) and f(v) in G′. When talking about 
a network or a tree, we always mean the equiv-
alence class of isomorphic networks or trees. 
Hence, we do not distinguish between isomor-
phic networks. By definition, two isomorphic 
networks have the same delta sequence, but the 
opposite is not true (Egghe, 2024).

1.4. Definition: Spanning tree 
of a connected graph

A spanning tree of an N-node connected graph 
is a set of N − 1 edges that connects all nodes of 
the network and contains no cycles. A graph may 
have different (non-isomorphic) spanning trees.

1.5. Definition: The Lorenz curve

Let X = (x1, x2, …, xN) be an N-sequence with 
xj  ∈  ℝ+, j = 1, …, N (Lorenz, 1905). If X is an 
N-sequence, ranked in decreasing order (al-
ways used in the sense that ranking is not nec-
essarily strict), then the Lorenz curve of X is 
the curve in the plane obtained by the line seg-
ments connecting the origin (0,0) to the points 

, k = 1, …, N. For k = N, the endpoint 
(1,1) is reached.

1.6. Definition: The majorization property

If X and X′ are N-sequences, ranked in decreas-
ing order, then X is majorized by X′ (equiva-
lently, X′ majorizes X), denoted as X ≼L X′, if 
(Hardy et al., 1934; Marshall et al., 2011)

 xj ≤ x ́j  fork = 1, …, N – 1
and  xj =  x ́j 	 (2)

Figure 1. A tree and a branch rooted in node m.
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The index L in X ≼L X′ refers to the fact 
that this order relation corresponds to the 
order relation between the corresponding 
Lorenz curves. One may observe that X is 
majorized by X′ (X ≼L X′) if and only if the 
Lorenz curve of X′ is situated above (or coin-
cides with) the Lorenz curve of X. It is well-
known (see, e.g., Marshall et al., 2011, p. 14) 
that X ≼L Y is equivalent to each of the follow-
ing statements:

(A)	∑i φ (xi) ≤ ∑i φ (yi) for all continuous, con-
vex functions φ: ℝ → ℝ.

(B)	 Y can be obtained from X by a finite number 
of elementary transfers (Muirhead, 1903).

Here, an elementary transfer is a transfor-
mation from (x1, …, xN), where (x1, …, xN) is 
ranked in decreasing order, into (x1, …, xi + h, 
…, xj – h, …, xN), where 0 < h ≤ xj.

1.7. Definition: Basic transfers

In the case that the elements in (x1, …, xN) are 
natural numbers, h can also be taken as a nat-
ural number, and it can even be taken to be 
equal to 1. In this case, we will say that this 
transfer is a basic transfer. The appendix shows 
how to perform such basic transfers. We write 
X ≺L Y for the strict Lorenz majorization, that 
is, X ≼L Y with X ≠ Y.

1.8. Definition: Non-normalized 
Lorenz curves

Let X = (x1, x2, …, xN) be a decreasing N-se-
quence of nonnegative real numbers, then the 
corresponding non-normalized Lorenz curve is 
the polygonal line connecting the origin (0,0) 
with the points ( j,  xj), j = 1, …, N. This 
curve ends at the point with coordinates (N, 

 xj).

1.9. Definition: The non-normalized 
(or generalized) majorization order 
for N-sequences

If X and Y are decreasing N-sequences of non-
negative real numbers, then X is majorized by 
Y, denoted as X ≼ Y if

∀j, j = 1, …, N:  xk ≤  yk	 (3)

The relation ≼ is only a partial order as non-nor-
malized Lorenz curves (just like standard Lo-
renz curves) may intersect. If xj ≤ yj, for j = 1, 
…, N, then obviously X ≼ Y, but the opposite 
relation does not hold. As for the Lorenz ma-
jorization, we write X ≺ Y, for X ≼ Y with X ≠ Y.

2. TREES IN THE INFORMATION SCIENCES

Without aiming to be exhaustive, we pres-
ent a few examples to demonstrate that trees 
have frequently been utilized in the informa-
tion sciences. Every hierarchy leads to a tree 
structure. For instance, hierarchical clustering 
algorithms lead to special rooted trees called 
“dendrograms.” Each terminal node of a den-
drogram represents an object; nonterminal 
nodes represent non-singleton clusters; and the 
root represents the entire object set. Similarly, 
every ontology or classification scheme such as 
the MeSH index (Leydesdorff et al., 2012) and 
those discussed or used by Kwasnik (1999) and 
Archambault et al., (2011) is a tree, while trees 
have also been used for name disambiguation 
(Wang et al., 2012). Further, spanning trees 
have frequently been applied (Yang et al., 2012).

A well-known tree in citation analysis is the 
Chubin–Moitra citation classification scheme 
(Chubin & Moitra, 1975; Rousseau et al., 2018, 
p. 109). Here, citations (the root) are first sub-
divided into the affirmative and the negative 
branches. Terminal nodes on the affirmative 
branch are basic, subsidiary, additional, and 
perfunctory citations. On the negative branch, 
there are partially and totally negative cita-
tions. Another type of tree used in the infor-
mation sciences is the decision tree. This is a 
tree structure that enables a decision maker to 
decompose a large complex decision problem 
into several smaller problems (Winston, 1994). 
Such trees have been used, for example, in Fi-
del (1991), Kenekayoro et al., (2014), Ma et al., 
(2013), and Zheng et al., (2006). We finally re-
call that Kosmulski (2013) proposed a family 
tree of bibliometric indices.

3. BASIC TRANSFERS AND 
DELTA SEQUENCES OF TREES

First, we explain the relation between a basic 
transfer and the delta sequence of a tree. Given 
a tree T with a delta sequence ΔT = (δ1(T), δ2(T), 
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… , δN(T)), we know that always δN(T) = 1. If 
now we perform a basic transfer, replacing the 
sequence (δ1(T), δ2(T), …, δN(T)) by (δ1(T), …, 
δi(T) + 1, …, δj(T) – 1, …, δN(T)), where δj(T) > 1, 
we refer to this transfer as a basic tree transfer. 
Then, we see that the degree of the node at rank 
j decreased by 1. This happens if we remove a 
branch (without the root node) from the node 
at rank j. As the degree of the node at rank i has 
increased by 1 and all other degrees have stayed 
invariant, this can be realized by attaching a 
branch rooted at the node at rank j to the node 
at rank i. This is illustrated in Figure 2 and in 
more detail in the appendix.

Figure 2. A branch at node m (see Figure 1) 
is replaced by the same branch placed at node k.

4. MAJORIZATION AND GENERALIZED 
MAJORIZATION BETWEEN DELTA 
SEQUENCES OF NETWORKS

It is well-known that the relation ≼ is not a to-
tal order between delta sequences of networks 
(of course, with an equal number of nodes; 
Egghe, 2024). We next show that this is not 
even true for trees. Consider the following five 
non-isomorphic trees with N = 8 nodes (Fig-
ure 3).

The first four trees have the same delta se-
quence, namely Δ = (5,2,2,1,1,1,1,1) while the del-
ta sequence of the last one is Δ' = (4,4,1,1,1,1,1,1). 
Clearly, Δ and Δ' are different and not compara-
ble: Δ ⋠ Δ' and Δ' ⋠ Δ.

Proposition 1: In the set of delta sequences of 
N-node trees, the majorization order coincides 
with the generalized majorization (≼ =  ≼L) 
and (≺ = ≺L).
Proof: This follows immediately from the fact 
that the total degree of every tree with N nodes 
is 2(N − 1).

Now, we come to the main theorem of this 
article that provides a necessary and sufficient 
condition for delta sequences of trees to be 
comparable. 

Figure 3. Five non-isomorphic trees with eight nodes.

Theorem: Given two sequences Δ and Δ' of 
length N, where Δ is the delta sequence of a 
tree (hence, does not contain a zero) and also 
Δ' does not contain a zero, then

Δ ≺ Δ'
⟺

For every tree T with delta sequence Δ, there 
exists a tree T′ with delta sequence Δ', which 
is created from the tree T by moving a finite 
number of branches to nodes with a higher or 
equal degree.

Proof: Assume that the tree T′ is created from 
the tree T by moving a finite number of branch-
es (each without their root) to a node with a 

higher or equal degree. If we replace in T with 
ΔT = (δ1, δ2, …, δN) a branch of the node at rank 
j (δj > 1) to the node at rank i where δi ≥ δj, then 
only two values in ΔT change (but we have no 
information about the new ranking): δi be-
comes δi + 1, and δj becomes δj – 1. The new 
delta sequence has values

(δ1, …, δi-1, δi + 1, δi+1, …, δj-1, δj – 1, δj+1, …, δN)	 (4)

perhaps in a different order. Anyway, the new 
delta sequence is strictly larger (in the ≺ = ≺L 
ordering) than ΔT. Performing this operation a 
finite number of times proves that Δ ≺ Δ'.

Conversely, we consider a tree T with a delta 
sequence Δ (we know that such a tree exists). 
Hence, the given sequence Δ is ΔT. We know 



5Iberoamerican Journal of Science Measurement and Communication Vol. 4, No. 3, 2024, 1-9. DOI: 10.47909/ijsmc.136

ORIGINAL ARTICLE Majorization and the degree sequence of trees

now that Δ ≺ Δ'. By Muirhead’s theorem, we can 
apply a finite number of basic transfers on the 
tree T (moving from Δ to Δ'). The resulting tree 
is the tree T′, whose existence we have to prove.

Figures 1 and 2 illustrate this theorem with 
Δ = (4,3,2,2,2,2,1,1,1,1,1) and Δ' = (5,2,2,2,2,2, 
1,1,1,1,1). The same reasoning as used in the 
theorem can be used to prove the following 
well-known result.

Proposition 2 (Hakimi, 1962): Given a se-
quence S of length N, consisting of strictly pos-
itive numbers, and with total degree 2(N − 1), 
then we can construct a tree T such that S is 
the degree sequence of T, that is, S = ΔT.
Proof: If C denotes the degree sequence of the 
N-node chain, then C ≺ LS, using that they both 
have a total degree of 2(N − 1). Now, by Muir-
head’s theorem, we can apply a finite number of 

basic transfers to C and reach S. The resulting 
tree is the tree T, whose existence we have to 
show.

Remark 1: Proposition 2 is Corollary 1, p. 499 
in Hakimi (1962).
Remark 2: The obtained tree T′ does not have 
to be unique, as illustrated in the appendix.
Remark 3: The theorem states, “for all T with 
delta sequence Δ, there exists a tree T′ with 
delta sequence Δ'.” The theorem is false when 
this expression is replaced by “for all T and T′ 
with delta sequences ΔT = Δ and ΔT'. = Δ'.” We 
provide an example for N = 8. Let T be the tree 
shown in Figure 4(a) and T′ the tree shown 
in Figure 4(b). Then Δ = ΔT = (4,2,2,2,1,1,1,1), 
Δ'  =  ΔT' = (5,2,2,1,1,1,1,1), and Δ ≼ Δ'. Yet, it 
is impossible to transform T into T′ via basic 
transformations (recall the condition δj ≥ δi).

Figure 4. Trees (a) T and (b) T′.

Using this example, we can construct an il-
lustration of the theorem though. Consider the 
tree T″ in Figure 5.

Figure 5. Tree T″.

Then Δ″ = ΔT″ = (5,2,2,1,1,1,1,1) and T″ can 
be obtained from T by basic transfers. 

Remark 4: The relation ≼ = ≼L is a total order 
for trees if and only the number of nodes N ≤ 7.
Proof: All non-isomorphic trees for N < 23 
can be found at https://users.cecs.anu.edu.
au/~bdm/data/trees.html. Then one can check 
that for N ≤ 7, we have a total order. For N = 8, 
we have already given an example that the or-
der is not total. Based on this example, it is 
easy to construct examples for all N > 8 (see 
Figure 6). This figure gives a tree T (left) with 
ΔT = (5,2, …, 2,1,1,1,1,1) and a tree T′ (right) with

ΔT' = (4,4,2, …, 2,1,1,1,1,1,1). Then ΔT ⋠ ΔT' and

ΔT' ⋠ ΔT

Figure 6. Non-isomorphic and non-comparable trees for N > 8.

⏟
(N–6times)

⏟
(N–8times)
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Proposition 3: If ΔC is the delta sequence of 
the N-node chain and ΔM is the delta sequence 
of a connected N-node network M (not being a 
chain), then

ΔC ≺ ΔM

Proof: Let ΔT be the delta sequence of any tree 
T. Then, we know that we can obtain this tree 
T be a finite number of basic transfers from a 
chain and, hence, by the theorem ΔC ≼ ΔT, with 
equality only if T is a chain. Consider now any 
N-node network M, then this network has a 
spanning tree TM with TM ≼ ∆M. By the transi-
tivity of ≼ and the fact that M is not a chain, we 
obtain that ΔC ≺ ΔM.

5. APPLICATIONS

In the context of data file systems, directories 
and files are frequently represented as a tree 
structure. The transfer of a subdirectory (and 
all its constituent files) from one directory to 
another is a common operation. In the termi-
nology of this article, if the target directory 
has a higher degree than the original, this sig-
nifies that the new situation majorizes the old 
one. It is not uncommon for suggestions to be 
made regarding the restructuring of the fossil 
record, phylogenetic trees, which can result in 
changes that are analogous to the rearrange-
ment of branches in a tree (see, e.g., Tschopp 
et al., 2015).

6. CONCLUSION

This article represents a rare instance of com-
bining Lorenz curves and majorization on the 
one hand and degree sequences of networks 
on the other. This supports Rousseau’s claim 
(Rousseau, 2011) that Lorenz curves (and hence 
the majorization order) are universal tools for 
studying networks. In particular, we proved a 
theorem that provides a necessary and suffi-
cient condition for delta sequences of trees to 
be comparable in the majorization order. Our 
methodology leads to an almost trivial proof 
of Hakimi’s corollary (of a much more general 
result about linear networks) on the realizabil-
ity of a set of strictly positive natural numbers 
as degrees of the vertices of a tree. As trees are 
ubiquitous in the information sciences, our 

study contributes to a better understanding of 
trees as an important data structure.
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order and that they are not equal (otherwise, 
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Algorithm

For i = 1 to N − 1 (i represents an index):
While yi < xi
Find j such that yj > xj (otherwise, the 
transfer cannot lead to the required result)
Apply a basic transfer (transfer by 1) from 
node yj to node yi
Reorder Y

If Y = X, the algorithm ends.

Example: For N = 8: Y = (3,3,3,1,1,1,1,1) ≼ X = 
(5,3,1,1,1,1,1,1).

We take i = 1 and observe that 3 < 5. Next, we 
see that y3 = 3 > x3 = 1, hence, j = 3. We apply 
a basic transfer leading to Y = (4,3,2,1,1,1,1,1).

Still with i = 1 (as 4 < 5), we have j = 3, with 
y3 = 2 > x3 = 1.

Again, we apply a basic transfer leading to 
Y = (5,3,1,1,1,1,1,1) = X.

For the corresponding trees, we have (e.g., 
Figure A1):

Figure A1. Moving branches to go from Y (left) to X (right).

Next, we provide an example where we 
start from the eight-node chain leading to 
Δ = (5,2,2,1,1,1,1,1), the delta sequence of 
the first four trees of Figure 3. Recall that 
the delta sequence of the eight-node chain is 
(2,2,2,2,2,2,1,1).

Example: Following the algorithm, we see 
that for i = 1, 2 < 5, hence, j = 4 (as 2 > 1).

This leads to (3,2,2,1,2,2,1,1), and rearrang-
ing gives (3,2,2,2,2,1,1,1).

Now, i in the algorithm is still equal to 1 (3 < 5) 
and j = 4 (2 > 1) leading to (4,2,2,1,2,1,1,1). Rear-
ranging gives (4,2,2,2,1,1,1,1).

Still i = 1 (4 < 5) and j = 4 (2 > 1), which leads 
to (5,2,2,1,1,1,1,1) = Δ.

The corresponding trees are not unique, as 
they depend on the indexing of the nodes. Fig-
ure A2 shows how to get from the chain to a 
tree with delta sequence Δ. The nodes are indi-
cated by their index number (possibly chang-
ing in each step). Observe that for two nodes 
with equal degrees, we are free to index them 
as we wish.

Next, we apply a different way of indexing 
the nodes. This leads to the third tree of Fig-
ure 3 (see Figure A3).

Figure A2. Algorithm leading to the fourth tree in Figure 3.
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Figure A3. Algorithm leading to the third tree in Figure 3.


